Testing web applications using Playwright

Owdnaieywou'll learn
Prerequisites
* Implementidgvietsisiefine tests using Playwright-test
® |ntegratthgRuithtieatest and push the test report to Xray
o ®ANalidate that the test results are available in Jira
" Authentication
= _JUnit XML results
= JUnit XML results Multipart
o Jenkins
= Junit XML
Source-code for thas sk multipart

© Jira Ul L
o pasHogeRREIANeIN i formation to Xray
© Configurating the test reporter
© Seeing additional test information in Xray
®* Tips
® References

Overview

Playwright is a recent browser automation tool that provides an alternative to Selenium.

Prerequisites

For this example we will use Playwright Test Runner, that accommodate the needs of the end-to-end
testing. It does everything you would expect from the regular test runner.

Playwright Test Runner is still fairly new as you can see in the official documentation:

Zero config cross-browser end-to-end testing for web apps. Browser automation with Playwright ,
Jest-like assertions and built-in support for TypeScript.

Playwright test runner is available in preview and minor breaking changes could happen. We
welcome your feedback to shape this towards 1.0.

If you want, you can use other runners (e.g. Jest, AVA, mocha).

What you need:

® Access to a demo site that you want to test
* Node.js environment with Playwright and Playwright Test Runner

Implementing tests

To start using the Playwright Test Runner, follow the Get Started documentation.

The test consists of validating the login feature (with valid and invalid credentials) of the demo site, for
which we have created a page object that will represent the loginPage...

https://playwright.dev/docs/test-intro/
https://playwright.dev/
https://robotwebdemo.onrender.com/
https://playwright.dev/docs/test-intro/
https://playwright.dev/docs/test-intro/
https://playwright.dev/docs/test-intro/
https://robotwebdemo.herokuapp.com/
https://github.com/Xray-App/tutorial-js-playwright

J/models/Login.js

const config = require ("../config.json");

/'l nodel s/ Login.js
cl ass Logi nPage {

constructor(page) {
t hi s. page = page;
}

async navigate() {
awai t this. page. goto(config.endpoint);

}

async | ogi n(usernane, password) {
await this.page.fill(config.usernanme_field, usernane);
await this.page.fill(config.password_field, password);
await this.page.click(config.login_button);

}

async getlnner Text () {
return this. page.innerText("p");

}
}

nodul e. exports = { Logi nPage };

...plus a configuration file where we have the identifiers that will match the elements in the page

config.json

{
"endpoint" : "https://robotwebdeno. onrender.conl ",
"l ogi n_button" : "id=login_button",
"password_field" :"input[id=\"password_field\"]",
"username_field" : "input[id=\"username_field\"]"

}

Now we can define the test that will assert if the operation is successful or not.

login.spec.js

const { test, expect } = require(' @laywight/test');
const { LoginPage } = require('./nodels/Login');

test.describe("Login validations", () => {

test('Login with valid credentials', async({ page }) => {
const | ogi nPage = new Logi nPage(page);
awai t | ogi nPage. navi gate();
awai t | ogi nPage. | ogi n("deno", "node") ;
const nanme = await | ogi nPage. getlnnerText();
expect (nane) .t oBe(' Logi n succeeded. Now you can | ogout."');

IO N

test('Login with invalid credentials', async({ page }) => {
const | ogi nPage = new Logi nPage(page);
awai t | ogi nPage. navi gate();
awai t | ogi nPage. | ogi n("denp", "nodel");
const name = await | ogi nPage. getlnnerText();
expect (nane).toBe(' Login failed. Invalid user nane and/or
password. ') ;
1)
}

The Playwright Test Runner provides a Jest like way of describing test scenarios, here you can see that
it uses 'test, test.describe, expect'.

These are simple tests that will validate the login functionality by accessing the demo site, inserting the
username and password (in one test with valid credentials and in another with invalid credentials),
clicking the login button and validating if the page returned is the one that matches your expectation.

For the below example we will do a small change to force a failure, so in the | ogi n. spec. j s file
remove "/or" from the expectation on the Test ' Login with invalid credentials', this is the end result:

login.spec.js

const { test, expect } = require(' @laywight/test');
const { LoginPage } = require('./nodels/Login');

test.describe("Login validations", () => {

test('Login with valid credentials', async({ page }) => {
const | ogi nPage = new Logi nPage(page);
awai t | ogi nPage. navi gate();
awai t | ogi nPage. | ogi n("dero", "node");
const name = await | ogi nPage. getlnnerText();
expect (nane) . t oBe(' Logi n succeeded. Now you can | ogout."');

s

test('Login with invalid credentials', async({ page }) => {
const | ogi nPage = new Logi nPage(page);
awai t | ogi nPage. navi gate();
awai t | ogi nPage. | ogi n("derp", "nodel");
const name = await | ogi nPage. getlnnerText();
expect (nane).toBe(' Login failed. Invalid user nane and password.');
b
)

Once the code is implemented (and we will make it fail on purpose on the ‘Login with invalid credentials’
test due to missing word, to show the failure reports), can be executed with the following command:

https://github.com/microsoft/playwright-test/blob/master/README.md
https://robotwebdemo.herokuapp.com/

npx playwight test --browser=chrom um--reporter=junit,line

First, define one extra parameter: "browser" in order to execute the tests only with the chrome browser
(chromium), otherwise the default behavior is to execute the tests for the three available browsers
(chromium, firefox and webkit).

The results are immediately available in the terminal.

In this example, one test has failed and the other one has succeed, the output generated to the terminal
is the above one and the corresponding Junit report is below:

Junit Report

<testsuites id=
time="3.024">
<testsuite name="| ogi n.spec.js" tinestanp="1623863508251" host name=""
tests="2" failures="1" ski pped="0" tinme="2.667" errors="0">
<t est case nane="Login validations Login with valid credential s" classnane="
login.spec.js:6:5 > [chromiun] Login validations Login with valid
credentials" time="1,754">
</testcase>
<testcase nane="Logi n validations Login with invalid credential s"
cl assname="1ogi n.spec.js:14:5 > [chromun] Login validations Login with
invalid credentials" time="0.913">
<failure message="login.spec.js:14:5 Login with invalid credentials" type="
FAl LURE" >

I ogin.spec.js:14:5 > [chromiun] Login validations Login with invalid
credentials

name="" tests="2" failures="1" skipped="0" errors="0"

Error: expect(received).toBe(expected) // bject.is equality

Expected: "Login failed. Invalid user nanme and/or password"
Received: "Login failed. Invalid user nane and/or password."

17 | awai t | ogi nPage. | ogi n("demd", "nodel");
18 | const nane = await | ogi nPage. getlnnerText();
> 19 | expect (nane).toBe(' Login failed. Invalid user nanme and

/or password');
| N
20 | 2
211 1)

at /Users/cristianocunha/ Docunment s/ Proj ects/ Pl aywighttests
/tutorial-js-playwight-seleniunlogin.spec.js:19:22

at Wor ker Runner. _runTest Wt hBef or eHooks (/Users/cristianocunha
/ Docunent s/ Proj ects/ Playwighttests/tutorial-js-playwight-sel enium
/ node_nodul es/ @l ayw i ght/test/lib/test/workerRunner.js:290: 13)

</failure>
</ testcase>
</testsuite>
</testsuites>

Repeat this process for each browser type in order to have the reports generated for each browser.
Notes:

® By default it will execute tests for the 3 browser types available (that is why we are forcing it to
execute for only one browser)

® By default all the tests will be executed in headless mode

® Folio command line will search and execute all tests in the format: "**/?(*.)+(spec|test).[jt]s"

® |n order to get the Junit test report please follow this section.

Integrating with Xray

As we saw in the above example, where we are producing Junit reports with the result of the tests, it is
now a matter of importing those results to your Jira instance. You can do this by simply submitting
automation results to Xray through the REST API, by using one of the available CI/CD plugins (e.g. for
Jenkins) or using the Jira interface to do so.

API

API
Once you have the report file available you can upload it to Xray through a request to the REST API

endpoint for JUnit. To do that, follow the first step in the instructions in v1 or v2 (depending on your
usage) to obtain the token we will be using in the subsequent requests.

Authentication

The request made will look like:

curl -H "Content-Type: application/json" -X POST --data '{ "client_id":
"CLIENTID', "client_secret": "CLIENTSECRET" }' https://xray.cloud.getxray.
app/ api/vl/authenticate

The response of this request will return the token to be used in the subsequent requests for
authentication purposes.

JUnit XML results

Once you have the token we will use it in the API request with the definition of some common fields on
the Test Execution, such as the target project, project version, etc.

curl -H "Content-Type: text/xm "™ -X POST -H "Authorization: Bearer
$token" --data @junit.xm" https://xray.cloud. getxray.app/api/v2/inport
/ execution/junit?project Key=AM& est Pl anKey=AM 23

With this command, you will create a new Test Execution in the referred Test Plan with a generic
summary and two tests with a summary based on the test name.

https://playwright.dev/docs/test-reporters#junit-reporter
https://docs.getxray.app/display/XRAYCLOUD/Import+Execution+Results+-+REST#ImportExecutionResultsREST-JUnitXMLresults
https://docs.getxray.app/display/XRAYCLOUD/Import+Execution+Results+-+REST#ImportExecutionResultsREST-JUnitXMLresults
https://docs.getxray.app/display/XRAYCLOUD/Authentication+-+REST
https://docs.getxray.app/display/XRAYCLOUD/Authentication+-+REST+v2

Projects /| B WebDemo / B AM-23

Overall Execution Status TOTALTESTS: 2
PASSED
| - Filters ~ 0 v Columns v
Key Summary Assignee #Test Latest Status Actions

Executions

— AM- Login validations Login with

() =
~ 26 validcredentials 1 PASSED -
~ AM- Login validations Login with
O Loam ne Lod 1 PASSED =
27 invalid credentials
1 Total 2 issues
Test Executions
Add Test Executions
. ~ 10 v Columns v
Key Summary Assignee #Tests #Defects Test Status Actions
Environment
o AM- Execution results Cristiano o
T 40 [1617704470590] Cunha
1 Total 1 issues

JUnit XML results Multipart

However, there's another endpoint that is more flexible and allows the customization of any field on the
target Test Execution; this is the specific JUnit multipart endpoint.

This endpoint follows a JSON-based syntax based on Jira's REST API for updating issues. As an
example of uploading the results to a Test Execution with a given Summary, associating with a Test
Environment (previously created as "Chromium®”, "Webkit" and "Firefox" to distinguish the different
executions) we have created these two additional files: issueFields.json and testlssueFields.json, where
we are doing the above associations.

issueFields.json

{
"fields": {
"project": {
"id": "10000"
b
"summary": "Login validation [Firefox]"
"issuetype": {
“id": "10011"
3
"conmponents" : [
{
"name":"Interface"
b
{
"name": " Logi n"
}
]
H

"xrayFields": {
"test Pl anKey": "AM 23",
"environnments": ["firefox"]

https://docs.getxray.app/display/XRAYCLOUD/Import+Execution+Results+-+REST#ImportExecutionResultsREST-JUnitXMLresultsMultipart

testlssueFields.json

{
"fields": {
"project": {
"id": "10000"
3
"| abel s" ["“firefox","junit"]
}
}

To upload the reports through Junit multipart endpoint, use the following command:

curl -H "Content-Type: nultipart/formdata"” -X POST -F info=@
/inmportResults/issueFields.json -F results=@unit_ff.xm -F testlnfo=@
/i nportResul ts/testlssueFields.json -H "Authorization: Bearer $token"
https://xray. cl oud. get xray. app/ api /v1l/inport/execution/junit/multipart

This way, you generate one Junit report per browser (considering each one as Test Environment in
Xray). As such we have 3 of the above files, one per each browser type: Chromium, Webkit and Firefox
(the ones you see above are for Firefox).

On Xray, you can see that the tests are associated to a Test Plan and you can identify which tests are
failing or passing per browser type. Below you can see two tests (for valid and invalid credentials) but
executed in 3 different browsers:

Projects / @ Amazing / B AM-23

Overall Execution Status TOTAL TESTS: 2

PASSED 1 FAILED

| - Test Environment: Chromium v 10 v Columns v
Key Summary Assignee #Test Latest Status Actions
Executions
AM- Login validations Login with valid
(m] amn va 9 3 PASSED =
26 credentials
AM- Login validations Login with
O 3 FAILED =
27 invalid credentials u
1 Total 2 issues
Test Executions
Add Test Executions
| - 10 v Columns v
Key Summary Assignee - #Tests #Defects ~ Status Actions
[AM-30 Login validation [Firefox] 2 0]
0 AM-29 Login validation [Webkit] 2 0]
O AM-25 Login validation [Chromium] 2 0]

1

Total 3 issues

You can also notice that the summary is now defined based on the files we used for uploading the test

results.

This will provide the team with another dimension to analyze the test results as you have the ability to
check the results per Test Environment:

Test Runs of Test AM-27

Aw-z7
Login validations Login with invalid credentials

® v AIEnvironments, sl satus v

Summary.
[SEITES] Login validation [Webkit
O awsz Login validation [Chromium]

O aws Login validation [Firefox]

Ltest tatus
W e

suns
W e
W e

W rae

Golumns v

Total 3 issues

Jenkins

Jenkins

As you can see below we are adding a post-build action using the "Xray: Results Import Task" (from the X
ray plugin available), where we have some options. For now, we will focus in two of those, one called "Jun

it XML" (simpler) and another called "Junit XML multipart" (both are explained below and will require two
extra files).

Junit XML

® the Jira instance (where you have your Xray instance installed)

® the format as "JUnit XML"

® the test results file we want to import

® the Project key corresponding of the project in Jira where the results will be imported

=
Xray: Rosults Import Task

sranstance [o

o

Import 0 same Test xecuton o

Prject key

TostExocuion ey

Import i esuls e n parale, sing 3 avlsbl CPU cores.

Glck hrs for more dtais

Tests implemented using Jest will have a corresponding Test entity in Xray. Once results are uploaded,
Test issues corresponding to the Jest tests are auto-provisioned, unless they already exist.

Login validations Login with valid credentials
@ Atach Creatosubtask D Linkissue v % Testdetalls
Description

Add a description

Environment
None

Test details
EECTITE © Procondions @3 TestSets B TestPlans [Test Runs

Test Repository
Test Type

Generic v

Definition

T 5L with

Xray uses a concatenation of the suite name and the test name as the the unique identifier for the test.

In Xray, results are stored in a Test Execution, usually a new one. The Test Execution contains a Test
Run per each test that was executed using playwright-test runner.

Execution results [1646826664675]
@ Arach Create subtask P Linkissve | v (@ Tests

Description

Add a description,

Tests

Add Tests v

Overall Execution Status

Z_passep TOTAL TESTS: 2

. - Fites v 10 v Colmns v

Rank+ Key Summary TestType Dataset #Defects Status Actions

O 1 EWB-36 Login validations Login with valid credentials Generic 0 [0 passep =0
O 2 EWB-37 Loginvalidations Login with invalid credentials ~ Generic 0 [PasseD =0

1 Total 2 issues

Detailed results, including logs and exceptions reported during the execution of the test, can be seen on
the execution screen details of each Test Run, accessible through the Execution details:

https://plugins.jenkins.io/xray-connector/
https://plugins.jenkins.io/xray-connector/

Execution results [1646826664675]

@ Atach D Createsubtask P Linkissve [Tests

Description

Add a description,

Tests

Overall Execution Status

TOTAL TESTS: 2

PASSED

. - Fits v 10 v Columns ~
Rank- Key Summary TestType Dataset #Defects Status Aetions

O 1 EWB36 Login validations Login with valid credentials Generic o PASSED

O 2 EWB37 Login validations Login with invalid credentials Generic o PASSED Eir)

Total 2 ssues

1

As you can see here:

Login validations Login with valid credentials °

Fodogs ©

Testdetalls £z

Junit XML multipart

¢ the Jira instance (where you have your Xray instance installed)

® the format as "Junit XML Multipart"

® the two files already added to the repo: "issueFields.json" and "testlssueFields.json" (in the xray
_multipart directory, note that you must update the inner values to have the correct labels,
projectid, testPlanKey, issueType and environments)

® The results file, in our case "junit.xml"

Format [puntn. mutipart

Import o Same Tost xocuton

Tos s

tssuerilds son

ns_nomajsorkspacafPlaysrignt Tosia

Import i resus les i parste, i a valable CPU cores

ik horo for more deals

In this integration we have more control over the import to Jira. In this particular case, you can see that
we will import these results to the Project with the id:10000, with a specific summary and associate this
with a particular Test Plan and with a specific Test Environment, all of this is specified in the files
(issueFields.json and testlssuesFields.json).

https://github.com/Xray-App/tutorial-js-playwright-selenium/blob/main/xray_multipart/issueFields.json
https://github.com/Xray-App/tutorial-js-playwright-selenium/blob/main/xray_multipart/testIssueFields.json

Projects / @ WebDemo / E AM-23

All Environments, final status v Create Test Execution o Add

Overall Execution Status TOTAL TESTS: 2
2FASSED
| - Filters ~ 10 v Columns ~
Key Summary Assignee #Test Latest Status Actions
Executions
AM- Login validations Login with
- 26 valid credentials ! . PASSED
AM- Login validations Login with
O -) 1 PASSED
27 invalid credentials .
Prev. 1 Next Total 2 issues
Test Executions
Add Test Executions
| - 0 v Columns ~
Key Summary Assignee #Tests #Defects Test Status Actions
Environment
AM- Login validation
] 2 o LI
42 [Webkit Ll
Prev 1 Next Total 1 issues

Jira Ul

Jira Ul

Create a Test Execution for the test that you have

projects / (§ Xray Tutorials / [XT-96
Login validations Login with invalid credentials
@ aach Createsubtask D Linkissue v § Testdetails +er

Description
Add a description...

Test details.

B Testdotais memnmﬂnns Q Testsos [Testpians [

Existing test execution...

Exploatory App Ficversions Revision_ Status Actions
O Xroa Execution results [1624290219673) 1 passen
Prov 1 Nex Total 1issues

Fill in the necessary fields and press "Create."

Create Test Execution
proect
Xray Tutorials

Summary*

Ad-hoc execution for XT-96

Assignee
cristiano Cunha v
Choose auser o assign the Test Exeuion
Fix Vrsionfs
Select. v
Test Environment
Select. v

@ Exccute Immediately

_/ Open the Test Execution and import the JUnit report.

Guscn Bowmesbk Punkos | - e

co s <@

Overall Exection Status

™ -

Choose the results file and press "Import."

Import Execution Results

No e chosen

The file with the execution results for the Test Execution.

The Test Execution is now updated with the test results imported.

Projects / (3 Xray Tutorials | B XT-474
Ad-hoc execution for XT-96
@ Aach Createsubtask O Linkissue | v [Tests

Description

Add a description.

Tests
Overall Execution Status
B s v 0 v Coumns v
Rank+ Koy Summary TestType Dataset #Defects Status Actions
0 1 X475 Login validations Login with valid credentials Generic 0 [0 PasseD =0
O 2 XT-476 Login validations Login with invalid credentials Generic o W Faen Eil
1 Next Total 2 issues

Tests implemented using Jest will have a corresponding Test entity in Xray. Once results are uploaded,
Test issues corresponding to the Jest tests are auto-provisioned, unless they already exist.

Projects / (@ Xray Tutorials / @ XT-475
Login validations Login with valid credentials
@ Atach Create subtask (P Linkissue v % Testdetails

Description

Add a description.

Tot detalls
O Proconttons @ Tostses @ Tostplans 3 Tt Runs

Test Repository.
Test Type

Generic v

Definition

fehromium) > I 15:6:5> Logi s Log L

Xray uses a concatenation of the suite name and the test name as the the unique identifier for the test.

In Xray, results are stored in a Test Execution, usually a new one. The Test Execution contains a Test
Run per each test that was executed using playwright-test runner.

Projects / (3 Xray Tutorials | 0 XT-474

Ad-hoc execution for XT-96
@ htach D) Createsubtask P Linkissve | v [DTests o
Description

Add a description.

Tests

Add Tests

Overall Execution Status

a - Filters v 0 v Columns v
Rank Key Summary TestType - Dataset #Defects Status Actons
O 1 XT475 Logh validations Login with vald credentials Generic 0 1 passen Ell
O 2 X747 Logh validations Login with invalid credentials Generic 0 W raLeo il
1 Nex Total 2issues

Detailed results, including logs and exceptions reported during execution of the test, can be seen on the
execution screen details of each Test Run, accessible through the Execution details:

Projects | [Xray Tutorials / O3 XT-474
Ad-hoc execution for XT-96

@ Anach Createsubtask D Linkissue | v [Tests
Description

Add a description,

Tests

Add Tests v

Overall Execution Status

| - Filters v 10 v Columns v
Rank Key: Summary TestType Dataset #etects - Status \ Actions

0 1 X1-475 Loginvalidations Login with vald credentials Generic 3 [passe E

O 2 X147 Loginvaldations Login with invalid credentisls Generic 0 WAL il

Vo1 Nex Total 2issues

As we can see here:

Login validations Login with invalid credentials yr—

Passing additional test related information to Xray

We manage to have our contribution to Playwright approved and the end result is that you can use the
native Junit reporter to enrich the Junit report with information that will be treated by Xray natively.

Now you can use the testinfo object to add properties in the Junit report, adding information that is
natively supported by Xray.

Configurating the test reporter

To use it start by including a configuration file 'playwright.config.js' with the following content:

https://playwright.dev/docs/test-reporters#junit-reporter

playwright.config.js

/1 JUnit reporter config for Xray

const xrayOptions = {
/1 Whether to add <properties> with all annotations; default is false
enbedAnnot ati onsAsProperties: true,

/1 By default, annotation is reported as <property nane='' value=""'>.
/1 These annotations are reported as <property nane="'

text Content Annotations: ['test_description'],

/1 This will create a "testrun_evi dence" property that contains all
attachnents. Each attachment is added as an inner <itenr el enent.

/1 Disables [[ATTACHVENT| path]] in the <system out>.

enbedAtt achnment sAsProperty: 'testrun_evi dence',

/1 Were to put the report.
outputFile: './xray-report.xn'
b

const config: PlaywightTestConfig = {
reporter: [["junit', xrayOptions]]

h

nodul e. exports = config;

This configuration setup properties with particular annotations that are natively interpreted by Xray.

On the tests we can now add information using the testinfo object available:

>val ue</ property>.

login.spec.js

const { test, expect } = require(' @laywight/test');
const { LoginPage } = require('./nodels/Login');

test.describe("Login validations", () => {

test('Login with valid credentials', async({ page }, testlnfo) => {
const | ogi nPage = new Logi nPage(page);
awai t | ogi nPage. navi gate();
awai t | ogi nPage. | ogi n("deno", "node") ;
const nanme = await | ogi nPage. getlnnerText();

/1 Addi ng Xray properties

testInfo.annotations. push({ type: 'test_key', description: 'XT-92'
1)

testInfo.annotations. push({ type: 'test_summary', description:
" Successful login.' });

test I nfo.annotations. push({ type: 'requirenents', description: 'XT-

41 1),
testlnfo.annotations. push({ type: 'test_description', description:
"Validate that the login is successful.' });
expect (nane) . t oBe(' Logi n succeeded. Now you can | ogout."');
1

test('Login with invalid credentials', async({ page }, testlnfo) => {
const | ogi nPage = new Logi nPage(page);
awai t | ogi nPage. navi gate();
awai t | ogi nPage. | ogi n("deno", "nodel");
const name = await | ogi nPage. getlnnerText();

/1 Addi ng Xray properties

testInfo.annotations. push({ type: 'test_key', description: 'XT-93'
)

testInfo.annotations. push({ type: 'test_summary', description:
"Unsuccessful login.' });

test I nfo.annotations. push({ type: 'requirenents', description: 'XT-
41 1),

testInfo.annotations. push({ type: 'test_description', description:
"Validate that the login is unsuccessful.' });

/1 Capture a screenshot and attach it.
const path = testlnfo.outputPath('tnp_screenshot.png');
awai t page. screenshot ({ path });
testInfo.attachnents. push({ nane: 'screenshot.png', path,
content Type: 'inmge/png' });

expect (nane).toBe(' Login failed. Invalid user nanme and password.');
1
b

We added several properties in the test to showcase the capabilities of these annotations but you can
use only the ones that are useful in your case.

All annotations will be added as <property> elements on the JUnit XML report. The annotation type is
mapped to the name attribute of the <property>, and the annotation description will be added as a value
attribute.

Resuming the annotations we are using:

test_key: Link to the test in Xray with the specified key.
test_summary: Redefine the summary of the test.
test_description: Redefine the test description.
requirements: Link to one or several requirements in Xray.

There's a special way to add attachments, using the t est | nf o object; as an example, in the following
test we are adding the screenshot to the test:

test('Login with invalid credentials', async({ page }, testinfo) => {

const path = testlnfo.outputPath('tnmp_screenshot.png');
awai t page. screenshot ({ path });

testlnfo.attachments. push({ name: 'screenshot.png', path, contentType:
"inmage/png' });\

Seeing additional test information in Xray

If you are using the Junit reporter defined above the results uploaded to Xray have now the information
provided within the test.

To import these results you should use exactly the same approach as described here because the report
generated will be a valid Junit report with extra information.

Once imported we can see the redefinition of the summary, the screenshot added, the redefinition of the
test description and the link added to the requirement.

eay Tutorials | Test Exccution: XT-487 | Test XT-63 Tszo2 @ @

Unsuccessful login.| @ Execute with Exploratory App Import Execution Results.

Timer Started on Rssignee

= > 0e:00:00 © 4402022 03:54 PM Cristiano Cunha

Finshed On Executed By

No time logged 41012022 0354 PM Cristiano Cunha

Versions Test Environments

- Findings svomce) @

> Defects @ ©
« Evidence @ ©
I > screenshot 146 kB 4/Juj2022 03:54 PM
> Comment
Testdetails =mm Test Repository | Account

~ Test Description

Validate that the login is unsuccessful

v Testlssue Links @

[@t ioom s < 000

~ Definition

login.spec:15:14:5 » [chromium]

~ Results @

Contxt output Duration status
Testsuite loginspec.ts , sams QTN
Login valdatons »Login withinvald credenials
= rror, ENOENT: no such il or
directory, oyt est.resulsfogin-Login-validations-Login-with-
invald-credentialsftes-falld-1png’ ->

invalid-

479.png’ attachment #1: screenshot (image/png

validations-Login-uith-nvalid-credentialsfest-failed-1.on

Tips

® after results are imported in Jira, Tests can be linked to existing requirements/user stories, so
you can track the impact of their coverage.

® results from multiple builds can be linked to an existing Test Plan in order to facilitate the
analysis of test result trends across builds.

® results can be associated with a Test Environment, in case you want to analyze coverage and
test results by that environment later on. A Test Environment can be a testing stage (e.g. dev,
staging, prepod, prod) or an identifier of the device/application used to interact with the system
(e.g. browser, mobile OS).

References

® https://playwright.dev/docs/test-intro/
® https://playwright.dev/

Overview
Prerequisites
Implementing tests
Integrating with Xray

° API

= Authentication

= JUnit XML results

" JUnit XML results Multipart
© Jenkins

= Junit XML

" Junit XML multipart
© Jira Ul

Passing additional test related information to Xray
© Configurating the test reporter
O Seeing additional test information in Xray
Tips
References

https://playwright.dev/docs/test-intro/
https://playwright.dev/

	Testing web applications using Playwright

