
Parameterized Tests

Overview
Parameterized tests
Datasets

Parameter types
Combinatorial parameters
Dataset scopes
Dataset limits

Parameterized preconditions
Execution
Parameterized tests vs test environments

Defining a parameterized test
Creating a dataset
Importing a dataset from a CSV file
Exporting a dataset to a CSV file
Overriding a dataset in a test plan or test execution

Overview
Test parameterization is a powerful practice that allows the same test to be executed multiple times with different parameters. Parameters are similar to 
input values (variables) that can change with each execution.

Without the ability to define parameterized tests, all values must be hard-coded into the specification, which makes the test static and difficult to 
modify. Static tests lead to a lot of redundancy since you need to define and clone the same test for the different combinations of values needed to cover 
different scenarios or variations of the same test.

By extracting the variability of the test specification into a table of test inputs and verifiable outputs, we are effectively doing . Ideally, data-driven testing
these tests are automated. However, this might not be always possible or viable and manual tests can take advantage of this methodology as well.

Parameterized tests

Let's start with an example:

Suppose we need to validate the login on a website with a set of valid and invalid usernames and passwords:

Username Password Valid

admin 123123 valid

john.doe ###### invalid

jane.doe jane123 valid

The following test cases need to be executed:

# Action Data Expected Result

1 Open the website. The main page is displayed and the user is able to enter login 
credentials.

2 Enter the following login and password, and press the Login 
button.

Login: admin

Password: 
123123

The login is valid.

# Action Data Expected Result

1 Open the website. The main page is displayed and the user is able to enter login 
credentials.

2 Enter the following login and password, and press the Login 
button.

Login: john.doe

Password: 
######

The login is invalid.

# Action Data Expected Result

1 Open the website. The main page is displayed and the user is able to enter login 
credentials.



2 Enter the following login and password, and press the Login 
button.

Login: jane.doe

Password: 
jane123

The login is valid.

Instead of creating separate tests, test designers can instead create a single test with the following parameters:  ,  and Username Password, Valid.

# Action Data Expected Result

1 Open the website. The main page is displayed and the user is able to enter login 
credentials.

2 Enter the following login and password, and press the 
Login button.

Login: ${Username}

Password: ${Passw
ord}

The login is  .${Valid}

Parameterized tests in Xray are defined just like any other test with the addition of some parameter names within the specification. 

Parameters are embedded within the test specifications using the following notation: ${PARAMETER_NAME}. Parameter names are case-sensitive.

This notation is used to reference parameters within the . You can reference parameters on the , , , and even on test steps Action Data Expected Result
any test step  . that are text-basedcustom fields

Parameters are defined within datasets. However, it is possible to reference a parameter that is not yet defined (meaning it does not have a corresponding 
name within the dataset). In this case, the parameter will be highlighted in red.

Datasets

Currently, the test parameterization feature is only available for Manual Tests. Xray will support defining parameters and use datasets on BDD 
and generic test types as well.



The parameters, along with their values, are defined within a . A dataset is a collection of data represented with a tabular view where every column dataset
of the table represents a particular variable (or ), and each row corresponds to a given record (or ) of the dataset.parameter iteration

The number of rows in the dataset determines the number of iterations to execute. If the dataset contains a single row, there will be a single execution 
parameterized with the values defined on the dataset row.

Datasets can be defined in different . A dataset can be defined, edited, or simply viewed using the " " button located in each entities and scopes Dataset
Xray .entity or scope

Parameter types

Parameters can have the following types:

Text - where the parameter value will be set using an open text field.
List - where the parameter value can be selected from a predefined list of options. 

List parameters can be created using either  or lists.ad hoc predefined 

Ad hoc lists are defined locally for each parameter, while predefined lists are created by administrators at different levels:

Global - managed by Jira administrators (to learn more about Global lists, click ).here
Project - managed by project administrators (to learn more about Project lists, click ).here

Global lists can not be used directly. These must be included in the project by the project administrator before they can be accessed within a dataset of 
that project.

Having predefined lists is useful if the list parameters are commonly used in multiple datasets. If multiple projects make use of the same list, you can also 
create a global list so that it can be used by different projects. This way you have a central place to manage common parameter lists.

Examples of predefined lists might be:

Profiles,
Users,
Roles,
Colors,
Credit card types,
Addresses,
...

When creating a new list parameter using a predefined list, you can choose a list that is available within the current project. The current project is 
determined by the parent issue where the dataset is defined.

Combinatorial parameters

Combinatorial parameters are special parameters that will be combined with the remaining parameters (combinatorial or seeding parameters) to generate 
all possible combinations automatically. This prevents users from typing all the combinations when creating a dataset.

S  parameters are those parameters that describe fixed test cases. The seeding parameters will not be combined among each other, only with eeding
combinatorial parameters.

Let's consider the following example:

We create a test for checking if we can add books to a shopping cart in our online book store. We have parameters like , , , , Item Price Rating In Stock Condit
, and . There are certain books we want to test (3 in this case). However, we would like to test all combinations of these books with the following ion Format

parameters:  and . Gift Quantity

In this case, these will be the seeding parameters:

Item,
Price,
Rating,
In Stock,
Condition,
Format

Because we want to test these items with all the combinations of  and  parameters, we can create these as  parameters: Gift Quantity Combinatorial

Gift*
Quantity*

Combinatorial parameters are denoted with an asterisk (*) suffix. 

https://docs.getxray.app/display/XRAYCLOUD/Global+Settings%3A+Parameter+value+lists
https://docs.getxray.app/display/XRAYCLOUD/Project+Settings%3A+Parameter+value+lists


1.  
2.  
3.  

Xray will generate all possible combinations upon execution automatically. 

Dataset scopes

A dataset can be defined in the following entities/scopes:

Test (default dataset)
Test Plan - Test
Test Execution - Test (Test Run)

The closest dataset to the test run will be the one used to generate the iterations, effectively overriding any dataset defined in higher levels:

Test Execution - Test (Test Run) Test Plan - Test Test (default) >   > 



The test dataset is the default. If there is the need to override or change this dataset you can do this at the planning or execution phases.

Dataset limits

Maximum number of #  per dataset: iterations 1000
Maximum Number of #  per dataset: parameters 20
A dataset can not contain duplicate rows.

Parameterized preconditions

Precondition issues can also be parameterized by including parameter names in the precondition specification.

The parameters will be unfolded on the execution screen, just like Test cases. For this, the dataset must have the same parameters, matched by name.

Execution

All iterations for a given test are executed within the context of the same test run. Each iteration can be expanded, and the steps executed individually. The 
step parameters will be replaced by the corresponding iteration values. The steps affect the iteration status that, in turn, affects the overall test run status.



1.  
2.  

a.  

b.  

Please check the  for more details.Execution page

Parameterized tests vs test environments

Although test environments can be thought of as a particular case of parameterized tests (given that environments can be considered parameters of test 
cases), datasets might not be the best choice for environmental variables that are not embedded in the test specification (e.g. manual test steps).

As such, it is not good practice to use datasets with environment variables such as , , . This is because:Browsers OSs Databases, or Devices

Test engineers often configure a specific setup (or environment) to execute a set of tests. In this case, test engineers might want to execute the 
tests oriented to the environment and not the test case. This means they execute all the test cases first for one environment, and then for another 
one, and so on. This way, having all these environments within the same test run is not ideal as users would have to jump from one test run to the 
other without finishing the execution.
Usually, test environments are independent variables or dimensions. For instance, let's consider the following test environment:  , Browser Databas

 and . If a test case fails only in a specific browser, once the bug is fixed, we might not want to re-execute the same test for all databases e, OS
and OS's as we are confident that the change did not affect these variables. With datasets, if one iteration fails, you need to re-execute all the 
iterations again (if you use a different test run, of course).
Xray does not provide reports based on parameters.

In conclusion, if your parameters are environment variables that do not need to be included in the test specification, don't use datasets. Use test 
environments instead.

Defining a parameterized test
In order to reference parameters within test steps:

Create or edit a given step using either the inline view within the test issue or the steps dialog.
When specifying a step, to reference a parameter you have two options:

Start typing . If there is a default dataset defined on the test, you should see a list of the available parameters. Choose the desired ${
parameter using the cursor keys or mouse. The parameter will be placed with the text.
Use the toolbar button . After pressing this button, and if there is a default dataset defined on the test, you should see a list of the ${
available parameters. Choose the desired parameter using the cursor keys or mouse. The parameter will be placed on the cursor 
position.

Test environments improvements

We have plans to improve how test environments are managed in Xray. It will be possible to specify or generate combinations of environments 
for different variables.

Please check our .roadmap

https://docs.getxray.app/display/XRAYCLOUD/Executing+Tests
https://docs.getxray.app/display/XRAYCLOUD/Roadmap


Creating a dataset
In order to create or edit the default dataset (within a test):

1. Press the  button. This will open the dataset dialog. Here, you can define a dataset by creating parameters and adding values to them."Dataset"

2. Creating parameters:

2.1. Press the "Create parameter" button located on the dataset main toolbar or on the empty view. This will open a small dialog to specify 
the parameter attributes.

2.2. Specify the name. Parameter names must start with a letter or underscore and can only contain letters, numbers, a space between 
words, "_", "-" and a max of 64 characters.

2.3. Check the  checkbox if you are creating a combinatorial parameter.Combinatorial

2.4. Choose the parameter type: . If the parameter type is a List, you can:Text or List

a. create an  list just for this parameter. You need to specify the values for the list.ad hoc



b. use a project .predefined list

2.5. Press "Save" to create the parameter. The parameter must be placed on the dataset. 



3. Adding combinatorial parameter values:

Once you have at least one parameter, you can start filling their values and adding new iterations.

A placeholder is provided within each combinatorial parameter. In order to add new values to combinatorial parameters:

3.1. For  parameters, just type the value and press the  button next to the field.text check

3.2. For  parameters, select an option and press the  button next to the field.list check

4. Adding rows (filling the parameter values):

4.1. Once you have non-combinatorial parameters, an empty placeholder row will appear so that the parameters can be populated for the 
default iteration.



Editing parameter values is as simple as editing their corresponding cells. The values will be kept when the cell loses focus.

You can navigate between cells of the same row and also between rows using the keyboard: TAB (forward), SHIFT+TAB (backward).

4.2. To create new rows, you can press the button below the table or navigate using the keyboard from the last row (a new row will be "New" 
created automatically by navigating forward to the last cell of the last row).

5. Converting a seeding parameter to a combinatorial parameter:

It is possible to convert an existing parameter to a combinatorial parameter. This will remove the parameter column from the seeding 
parameters table and group all remaining rows automatically. A new combinatorial parameter will be created by grouping all the values.

5.1.  Next to each column, there is an options button. Clicking this button will reveal a menu with options for ,  and  Editing Deleting, Converting
parameters.

5.2. Click on "Convert to combinatorial parameter."



6. Converting a combinatorial parameter to a seeding parameter:

It is also possible to convert a combinatorial parameter back into a seeding parameter.

6.1. Next to each combinatorial column, there is an options button. Clicking this button will reveal a menu with options for ,  Editing Deleting,
and  parameters.Converting

6.2. Click on the ."Convert to non-combinatorial parameter"



7. Generating all combinations:

You don't need to generate all the combinations for a given dataset in order to execute all iterations. Xray will do this automatically for all of 
the combinatorial parameters. However, sometimes we don't need all the combinations. In order to do this, we can generate all combinations 
and remove some iterations afterward.

7.1. Next to each combinatorial column, there is an  button. Clicking this button will reveal a menu with options for ,  options Editing Deleting, C
 parameters, and .onverting Generating all combinations

7.2. Click on the  A confirmation dialog will appear. Confirming the changes will apply the cartesian product "Generate all combinations."
between the combinational parameter values and the seeding parameter rows.

7.3. After having performed all changes in the dataset, you need to press the  button in order to persist the dataset into the database."Save"

8. Move left/right:

You can re-order any parameters in your dataset, by selecting the "Move left/right" option.

8.1. Open the options menu in either a Combinatorial or non-combinatorial (seeding) parameter, you will have a "Move left/right" option 
available. Notice that if the parameter is already place on the most outer left (right) position, the "Move left" (right) option is not available.



8.2. Select the move left/right option, This will swap the parameters positions.

Importing a dataset from a CSV file
Besides defining a dataset by creating parameters and setting their values directly using the Xray UI, it is also possible to import an existing dataset from a 
CSV file.

In order to import a CSV file:

1. Open the dataset dialog.

2. Choose the  option available on the Import dropdown button (located on the empty state view or on the dataset main button "Import from CSV"
toolbar). A dialog will appear.

3. Select and fill the following options:

- File - find a local CSV file with the desired dataset

- CSV delimiter - defaults to "," but you can choose any other character

- File encoding - defaults to UTF-8

- Overwrite existing parameter values - if checked, this option will delete any values from existing parameters

- Create new parameters - If checked, it will create non-existing parameters automatically, based on the CSV column name. Otherwise, it 
will just append/update the values on the existing parameters.



1.  
2.  

4. Press  to import the external dataset."Import"

Exporting a dataset to a CSV file
To export a dataset to a CSV file:

Open the Dataset dialog.
Click the  button next to the import button. Clicking this button will reveal a menu with options for  andoptions Export to CSV  Delete.

Combinational parameters

You can also import combinational parameters. Any parameter with an  will be considered a combinational parameter. E.g., asterisk suffix
Quality*. In this case, the "Create new parameters" option must be enabled.



3. Click the  . A file should be downloaded.Export to CSV

Overriding a dataset in a test plan or test execution
To define or override a dataset at the test plan or test execution level:

1. Navigate to the desired test plan or test execution issue

2. A menu action is provided on each test row. A new  named "Dataset" is also available by configuring the column layout for the Test Plan column
or Test Execution datatable. If there is a dataset already defined at this level, the dataset button will be displayed with a style.selected 

2.1. Open the dataset dialog by pressing the  button in the column or"Dataset"

2.2. Open the dataset dialog by selecting the action from the test row options menu."Dataset" 

Export CSV

The delimiter used to generate the CSV file is a  .comma



3. The dataset dialog is opened.

3.1. If there is a dataset defined on a parent level, it is possible to Override the parent dataset and modify its values.

3.2. Otherwise, you can start defining a new dataset at this level.

4. Once the dataset is defined (or overridden) you need to press   to persist the changes to the database."Save"




	Parameterized Tests

