Testing web applications using Playwright

Owdnaieywou'll learn
Prerequisites
* Implementidgvietsisiefine tests using Playwright
® |ntegratthgRuithtieatest and push the test report to Xray
o ®ANalidate that the test results are available in Jira
= JUnit XML results
= JUnit XML results Multipart
© Jenkins
= Junit XML
Source-code for thas suteralL multipart

o © Jira Ul L
e Tiscode is available in GitHub
® References

Overview

Playwright is a recent browser automation tool that provides an alternative to Selenium.

Prerequisites

For this example we will use Playwright Test Runner, that accommodate the needs of the end-to-end
testing. It does everything you would expect from the regular test runner.

Playwright Test Runner is still fairly new as you can see in the official documentation:

Zero config cross-browser end-to-end testing for web apps. Browser automation with Playwright ,
Jest-like assertions and built-in support for TypeScript.

Playwright test runner is available in preview and minor breaking changes could happen. We
welcome your feedback to shape this towards 1.0.

If you want, you can use other runners (e.g. Jest, AVA, mocha).

What you need:

® Access to a demo site that you want to test
® Node.js environment with Playwright and Playwright Test Runner

Implementing tests

To start using the Playwright Test Runner, follow the Get Started documentation.

The test consists of validating the login feature (with valid and invalid credentials) of the demo site, for
which we have created a page object that will represent the loginPage

https://github.com/microsoft/playwright-test/blob/master/README.md
https://playwright.dev/
https://robotwebdemo.onrender.com/
https://github.com/microsoft/playwright-test/blob/master/README.md
https://github.com/microsoft/playwright-test/blob/master/README.md
https://github.com/microsoft/playwright-test#get-started
https://robotwebdemo.herokuapp.com/
https://github.com/Xray-App/tutorial-js-playwright-selenium

J/models/Login.js

const config = require ("../config.json");

/'l nodel s/ Login.js
cl ass Logi nPage {

constructor(page) {
t hi s. page = page;
}

async navigate() {
awai t this. page. goto(config.endpoint);

}

async | ogi n(usernane, password) {
await this.page.fill(config.usernanme_field, usernane);
await this.page.fill(config.password_field, password);
await this.page.click(config.login_button);

}

async getlnner Text () {
return this. page.innerText("p");

}
}

nodul e. exports = { Logi nPage };

plus a configuration file where we have the identifiers that will match the elements in the page

config.json

{
"endpoint" : "https://robotwebdenp. onrender.com ",
"l ogi n_button" : "id=login_button",
"password_field" :"input[id=\"password_field\"]",
"usernane_field" : "input[id=\"username_field\"]"

}

And define the test that will assert if the operation is successful or not

login.spec.ts

import {it, describe, expect} from"@l aywight/test"
import { LoginPage } from"./nodels/Login";

descri be("Login validations", () =>{

it('Login with valid credentials', async({page}) => {
const | ogi nPage = new Logi nPage(page);
awai t | ogi nPage. navi gate();
awai t | ogi nPage. | ogi n("deno", "node") ;
const nanme = await | ogi nPage. getlnnerText();
expect (nane) .t oBe(' Logi n succeeded. Now you can | ogout."');

it('Login with invalid credentials', async({page}) => {
const | ogi nPage = new Logi nPage(page);
awai t | ogi nPage. navi gate();
awai t | ogi nPage. | ogi n("denp", "nodel");
const name = await | ogi nPage. getlnnerText();
expect (nane).toBe(' Login failed. Invalid user nane and/or
password. ') ;
1)
}

The Playwright Test Runner provides a Jest like way of describing test scenarios, here you can see that
it uses 'it, describe, expect'.

These are simple tests that will validate the login functionality by accessing the demo site, inserting the
username and password (in one test with valid credentials and in another with invalid credentials),
clicking the login button and validating if the page returned is the one that matches your expectation.

For the below example we will do a small change to force a failure, so in the login.spec.ts file remove "
/or" from the expectation on the Test ' Login with invalid credentials'’, this is the end result:

login.spec.ts

import { test, expect } from"@laywight/test"
inmport { LoginPage } from"./nodel s/Login";

test.describe("Login validations", () => {

test('Login with valid credentials', async({ page }) => {
const | ogi nPage = new Logi nPage(page);
awai t | ogi nPage. navi gate();
awai t | ogi nPage. | ogi n("derp", "node");
const nane = await |ogi nPage. getlnnerText();
expect (nane) . t oBe(' Logi n succeeded. Now you can | ogout."');

1)

test('Login with invalid credentials', async({ page }) => {
const | ogi nPage = new Logi nPage(page);
awai t | ogi nPage. navi gate();
awai t | ogi nPage. | ogi n("dermp", "nodel");
const nane = await | ogi nPage. getlnnerText();
expect (nane).toBe(' Login failed. Invalid user nanme and password.');
s
b

Once the code is implemented (and we will make it fail on purpose on the 'Login with invalid credentials’
test due to missing word, to show the failure reports), can be executed with the following command:

https://github.com/microsoft/playwright-test/blob/master/README.md
https://robotwebdemo.herokuapp.com/

npx folio -p browserNane=chrom um --reporter=junit,line --test-match=login.
spec.ts

First, define one extra parameter: "browserName" in order to execute the tests only with the chrome
browser (chromium), otherwise the default behaviour is to execute the tests for the three available

browsers (chromium, firefox and webkit).

The results are immediately available in the terminal

In this example, one test has failed and the other one has succeed, the output generated in the terminal
is the above one and the corresponding Junit report is below:

Junit Report

<testsuites id=
time="2.592">
<testsuite nane="logi n.spec.ts" tinmestanp="1617094735952" host nane=
tests="2" failures="1" ski pped="0" tinme="2.37" errors="0">
<t est case nanme="Login validations Login with valid credential s" classnane="
| ogi n. spec.ts Login validations" time="1.358">
</testcase>
<t estcase name="Login validations Login with invalid credentials"
cl assnanme="1 ogi n. spec.ts Login validations" tinme="1.012">
<failure message="login.spec.ts:14:5 Login with invalid credential s" type="
FAlI LURE" >

login.spec.ts:14:5 > Login validations Login with invalid credentials

nane="" tests="2" failures="1" ski pped="0" errors="0"

br owser Nanme=webki t, headf ul =f al se, sl owivb=0, vi deo=fal se,
screenshot OnFai | ur e=f al se

Error: expect(received).toBe(expected) // bject.is equality

Expect ed: "Login failed. Invalid user name and password. " ;
Recei ved: "Login failed. Invalid user name and/or password. &uot ;

17 | awai t | ogi nPage. | ogi n(" ; denp" ; , " ;
nodelé");
18 | const name = await | ogi nPage. getlnnerText();
> 19 | expect (nane).toBe(' Login failed. Invalid user nanme and

password. ') ;
| A
20 | b
211 })

at /Users/cristianocunha/ Docunents/ Proj ects/Playwighttest/|ogin.
spec.ts:19: 22

at runNext Ti cks (internal/process/task_queues.js:58:5)

at processlmediate (internal/tinmers.js:434:9)

at Worker Runner. _runTest Wt hFi xt ur esAndHooks (/ Users/cristianocunha
/ Docunent s/ Proj ect s/ Pl ayw i ghttest/node_nodul es/ fol i o/ out/workerRunner.js:
198:17)

</failure>
</testcase>
</testsuite>
</testsuites>

Repeat this process for each browser type in order to have the reports generated for each browser.
Notes:

® By default it will execute tests for the 3 browser types available (that is why we are forcing it to
execute for only one browser)

® By default all the tests will be executed in headless mode

® Folio command line will search and execute all tests in the format: "**/?(*.)+(spec|test).[jt]s"

® |n order to get the Junit test report please follow this section.

Integrating with Xray

As we saw in the above example, where we are producing Junit reports with the result of the tests, it is
now a matter of importing those results to your Jira instance. You can do this by simply submitting
automation results to Xray through the REST API, by using one of the available CI/CD plugins (e.g. for
Jenkins) or using the Jira interface to do so.

https://github.com/microsoft/playwright-test/blob/master/README.md#export-junit-report

API

API

Once you have the report file available you can upload it to Xray through a request to the REST API
endpoint for JUnit. To do that, follow the first step in the instructions in v1 or v2 (depending on your
usage) to obtain the token we will be using in the subsequent requests.

JUnit XML results

We will use the API request with the definition of some common fields on the Test Execution, such as the
target project, project version, etc.

In the first version of the API, the authentication used a login and password (not the token that is used in
Cloud).

curl -H "Content-Type: nultipart/formdata" -u admn:admn -F "file=@unit.
xm " "http://<LOCAL_JI RA_| NSTANCE>/ rest/raven/ 1. 0/ i nport/execution/junit?
pr oj ect Key=COW&t est Pl anKey=COu 9'

With this command, you will create a new Test Execution in the referred Test Plan with a generic
summary and two tests with a summary based on the test name.

ComicStore / COM-17
Execution results - junit.xml - [1622479652449]

#Edt QComment Assign Morev ToDo InProgress Done Admin v

©) Details

Test Execution I (View Workflow)
Unresolved

> Trivial Resolutior

5333

Show [100v]entries Columns +

800K
200

800K
? 289

Showing 110 2 of 2 entries

JUnit XML results Multipart

However, there's another endpoint that is more flexible and allows the customization of any field on the
target Test Execution; this is the specific JUnit multipart endpoint.

This endpoint follows a JSON-based syntax based on Jira's REST API for updating issues. As an
example of uploading the results to a Test Execution with a given Summary, we have created these two
additional files: issueFields.json and testlssueFields.json, where we are doing the above associations.

https://docs.getxray.app/display/XRAY400/Import+Execution+Results+-+REST
https://docs.getxray.app/display/XRAY400/Import+Execution+Results+-+REST
https://docs.getxray.app/display/XRAY400/Import+Execution+Results+-+REST

issueFields.json

{
"fields": {
"project": {
"id": "12400"
I
"summary": "Login validation [Wbkit]",
"issuetype": {
"id": "10100"
I
"conponents" : [
{
"nanme":"Interface"
I
{
"nane": "Logi n"
}
|
}
}

testlssueFields.json

{
"fields": {
"project": {
"id": "12400"
}
}
}

To upload the reports through Junit multipart endpoint, use the following command:

curl -H "Content-Type: nultipart/formdata” -u admn:admin -F "file=@unit.
xm " -F "info=@ray_nultipart/issueFields.json" -F
"testInfo=@ray_nultipart/testlssueFields.json" '"http://192.168.56.111: 8080
/rest/raven/1.0/inport/execution/junit/nultipart'

On Xray, you can see the tests and you can identify which tests are failing or passing. Below you can see
two tests (for valid and invalid credentials):

ComicStore / COM-28

Login validation [Webkit]

#Edt QComment Assign More v ToDo InProgress Done Admin v

~ Details M
Type: [Test Execution Status: (View Workflow)
Priority: O Trivial Resolution: Unresolved
Component/s; Interface, Login
Labels: None
Test Plan: None

Test Environments: None

> Description

v Tests
+Add v
Overall Execution Status
PASS
Total Tests: 2
= Filter(s)
B~ Apply Rank Show (100 v entries Columns ~
Rank ©Key ¢ Summary © TestType #Req #Def Assignee © Stats
Login
validations
0 2 SOM Loginwith Generic O) >
invalid
credentials
Login
validations
o 1 COM- | pginwith Generic 0 o >
2
valid

You can also notice that the summary is now defined based on the files we used for uploading the test
results.

Jenkins

Jenkins

As you can see below we are adding a post-build action using the "Xray: Results Import Task" (from the X
ray plugin available), where we have some options. For now, we will focus on two of those, one called "Ju
nit XML" (simpler) and another called "Junit XML multipart" (both are explained below and will require two
extra files).

Junit XML

® the Jira instance (where you have your Xray instance installed)

® the format as "JUnit XML"

® the test results file we want to import

* the Project key corresponding of the project in Jira where the results will be imported

-
Xray: Results Import Task

Jira INSTaNce | | oca) Server ‘
Format Uit XML ‘

Import o Same Tst Excution

Profoc Key com

coms

Importll resuls s ia paralle, using a1 avaiale CPU cores.

Tests implemented using Jest will have a corresponding Test entity in Xray. Once results are uploaded,
Test issues corresponding to the Jest tests are auto-provisioned, unless they already exist.

https://plugins.jenkins.io/xray-connector/
https://plugins.jenkins.io/xray-connector/

= Comicstore / COM-24
Login validations Login with invalid credentials

#Edt QComment Assign Morev ToDo InProgress Done Admin v

~ Details
Type: @ Test Status: (View Workflow)
Priority: © Trivial Resolution: Unresolved
Component/s: None.
Labels: Automation JUnit Testing

~ Description
Click to add description

~ Test Details
Type: Generic
Definition: login.spec.ts Login validations.Login validations Login with invalid credentials

~ Pre-Conditions.
“This test is not associated with Pre-Conditions yet.

Create Pre-Condition [| Associate Pre-Conditions

Xray uses a concatenation of the suite name and the test name as the the unique identifier for the test.

In Xray, results are stored in a Test Execution, usually a new one. The Test Execution contains a Test
Run per each test that was executed using playwright-test runner.

=Y Comicstore / CoM-29

Execution results - junit.xml - [1622537543505]

#Edt QComment Assign Morev ToDo InProgress Done Admin v

~ Details
Type: O Test Execution Status: (View Workflow)
Priorty: O Trvial Resolution: Unresolved
Componentss: None
Labels: None
Test Plan: com-9
Test Environments: None
~ Description
Execution resuits imported from external source
¥ Tests
+ Add v
OverallExection Status
2 onss
Total Tests: 2
= fiterts)
B> applyRank Show 100 [Jentries Columns ~
Rank ¢ Key Summary TestType #Req #Def Assignee status
2 Com.gq Login validations Loginwith oo ope g 0 Administrator (CICCNNND >
invalid credentials
Lps Lo valdations Loginwith minstrstor IO
! COM-22 ald credentials o o ° Ad e >

Shoing 1102 of 2 enres Frst previous] Next Last

Detailed results, including logs and exceptions reported during the execution of the test, can be seen on
the execution screen details of each Test Run, accessible through the Execution details:

v Tests Watchers:
-
2o
e
[ER—— Show 100 Penties Columns =
? COM-24 el credentials Genere. o o aminis

=

Showing 110201 2 entiss first prevous [l 1 xgeuremune

To00
~ Atachments
2 Drop files to attach, or browse. FAIL
ABoRTED
> Strcture BLockeD
PENDING
~ hetiity
Al Comments WorkLog Hstory Activty
There are no commentsyet o tisissue.
As you can see here:
© Execution Details
Test Desripon A
Custom s -
TostDovae -
ot G
et Ioa0ss Loginvaldators og lkatens g i Fld credenies
Resuts -

Junit XML multipart

® the Jira instance (where you have your Xray instance installed)
® the format as "Junit XML Multipart"

® the two files already added to the repo: "issueFields.json" and "testlssueFields.json" (in the xray
_multipart directory, note that you must update the inner values to have the correct labels,
projectid, issueType and environments)

® The results file, in our case "junit.xml"

Format

Test Bxcuton s

importin paratel

importall reuls fies i pral,usinga valble CPU cores.

Glck hre for more et

In this integration we have more control over the import to Jira. In this particular case, you can see that
we will import these results to the Project with the id defined in the file, with a specific summary, all of this
is specified in the files (issueFields.json and testlssuesFields.json).

~ Tests

Overall Execution Status

PASS

Total Tests: 2

=fierts)
R Show 100 Benties Columns ~
Rank Ky ¢ Summary Tettype gmea #ef Awignee © Stums
12a Looinvaidations Loginwit R
2 COM-24 - \alid credentials o ° ° i rat =
1 com-2s Legin validations Login with Generic o o Administrator »>

valid credentials

Showing 1t0 2 of 2 entries. First Previous [Next Last

Jira Ul

Jira Ul

Create a Test Execution for the test that you have

“ Tosts
ol
-+ Croate Tost Exacution ~ || + Add ~
‘Overall Execution Status. Wa
“ ox
oass cre
w
“n
= Fitter(s) Act
vie
B msected @ show(1o [envies Al Emiconments + Columns =
s Remove
Essculons s Ak Components SegnDete EndDste TestPln FicVersons _ Latst st
> candosu " Jo—
=
> Connddnumbers 1 Jo— None
> consubiaet , Jo—
> Canviutioy 1 Jo— None
» 1 Jo— None
p
> invalid Adi irat N
Cedon
Showing 10 6 f & entes st prevous [l Next Lot

Fill in the necessary fields and press "Create."

https://github.com/Xray-App/tutorial-js-playwright-selenium/blob/main/xray_multipart/issueFields.json
https://github.com/Xray-App/tutorial-js-playwright-selenium/blob/main/xray_multipart/testIssueFields.json

Create new test execution for tests in test plan COM-9

Project” ComicStore v
Summary® Test Execution for Test Plan COM-9
Assignee Administrator v
Choose a user to assign the Test Execution
Priority @ Blocker v
Start typing to get a list of possible matches or press down to select.
Fix Version/s -
Start typing to get a list of possible matches or press down to select.
Sprint COM Sprint 1 -
Start typing to get a list of possible matches or press down to select.

Test Environments v

Start typing to get a list of possible matches or press down to select.

Each environment where the Test is to be executed

Revision
The system revision for the test execution

Redirect to Test Execution

Create Cancel

Open the Test Execution and import the JUnit report.

ComicStore / COM-30

Test Execution for Test Plan COM-9

e [Gommen o LD oo mooes e i

~ Details Log work
Type: DTeStEReS i goarg Status: (View Workflow)
Priorty: © Blocker Resolution: Unresolved
Rank to Top
Components: None
Labels: None Rank to Bottom
Test Plan COM9 piachiiies
Test Environments: None
Voters
~ Description Stop watching
Click to add description watchers
8 Tosts Create sub-task

Move
Overall Execution Status.
Link

1 Clone
Tooo Labels
Total Tests: 1 Delete
=t Trigger Travis C1
Reset Defect Count
B aopyrenk Show 100 Penties Columns~

Export to Cucumber

Rank © Key TostTypo #Rog #Def Assignee status
Import Execution Results

Lo " .
1 COM-23 | Export Test Runs to Csv Generic 0 o Administrator [ECEEN >

Choose the results file and press "Import.”

Import Execution Results

Browse... No file selected.

The file with the execution results for the Test Execution

Import Cancel

The Test Execution is now updated with the test results imported.

com-30
Test Execution for Test Plan COM-9

#Edt QComment Assign Morev ToDo InProgress Done Admin v

~ Details
Type: O Test Execution Status: (View Workilow)
Priority: © Blocker Resolution: Unresolved
Component/s: None
Labels: None
Test Plan: com-s

Test Environments: None

~ Description
Click to add description

v Tests

OverallExecution Status

2oxss

Total Tess: 2
= Fiterts)
Bv aopiyRnk Show 100 Bentries Columns ~
Rank G Key Summary TestTye #Req #Det Assignee status
rpa Loginvalidations Loginwith ministrotor QTR
2 com-24 invalid credentials o ° ° A et s
Login validatons Loginwith ¢ I —)
! COM-22ajd credentials o ° ° Ad e >
Showing 110 2.f 2 entres First previous [l Next Last

Tests implemented using Jest will have a corresponding Test entity in Xray. Once results are uploaded,
Test issues corresponding to the Jest tests are auto-provisioned, unless they already exist.

Comicstore / COM-23
Login validations Login with valid credentials

(]

#Edt QComment Assign Morev ToDo InProgress Done Admin v

~ Details
Type: @ Test Status: (View Workfiow)
Priority: O Trivial Resolution: Unresolved
Component/s: None.
Labels: Automation JUnit Testing

~ Description

Click to add description
~ Test Details
Type: Generic
Definition: login.specits Logi Login with

Xray uses a concatenation of the suite name and the test name as the the unique identifier for the test.

In Xray, results are stored in a Test Execution, usually a new one. The Test Execution contains a Test
Run per each test that was executed using playwright-test runner.

[Comisstord | com-30
Test Execution for Test Plan COM-9

#Edt QComment Assign Morev ToDo inProgiess Done Admin v

¥ Details
Type: O Test Execution Status: D (View Workfiow)
Priority: © Blocker Resolution: Unresolved
Component/s: None
Labels None
Test Plan com-9
Test Environments: None

~ Description
Click to add description

¥ Tests

Overall Execution Status

2 ouss

Total Tests: 2.

= Fiter(s)
B AooyRank Show! f00 Pentres Columns ~
Rk Key ¢ Summary TestType #Rea #Def Assignee status
_q Losin valdations Login with By . [s
2 Comza Login aldations L Generic 0 o Adrministator >
1 comzs Lo veldatons Login it Generc o o Administrator [ZECRN >
Showing 1102 of 2 entries First provious [l Next Last

Detailed results, including logs and exceptions reported during execution of the test, can be seen on the
execution screen details of each Test Run, accessible through the Execution details:

3 Drop files to attach, o brovise. FaL
ABORTED
> Structure BLOCKED

PENDING

As we can see here:

©Execution Dstais

Aetiity >

Tips

® after results are imported in Jira, Tests can be linked to existing requirements/user stories, so
you can track the impact of their coverage.

® results from multiple builds can be linked to an existing Test Plan in order to facilitate the
analysis of test result trends across builds.

® results can be associated with a Test Environment, in case you want to analyze coverage and
test results by that environment later on. A Test Environment can be a testing stage (e.g. dev,
staging, preprod, prod) or an identifier of the device/application used to interact with the system
(e.g. browser, mobile OS).

References

® https://playwright.dev/docs/test-intro/
® https://playwright.dev/

Overview
Prerequisites
Implementing tests
Integrating with Xray
° API
= JUnit XML results
= JUnit XML results Multipart
© Jenkins
= Junit XML
= Junit XML multipart
o Jira Ul

® Tips
® References

https://playwright.dev/docs/test-intro/
https://playwright.dev/

	Testing web applications using Playwright

