
Understanding coverage and the calculation of Test and
requirement statuses

Overview of statuses
Test status

Managing Test Statuses
Test Step statuses

Managing Test Step Statuses
Requirement statuses

Calculation of the status for a given Test Run
Configuration Example 1
Configuration Example 2

Calculation of the status for a given Test
Calculate the status of some Test, in version V or Test Plan TP, for Test Environment TE
Calculate the status of some Test, in version V or Test Plan TP, for "All Environments"
Examples

Calculation of the status for a given requirement
Requirements and sub-requirements conjunction
Examples

Setup information for some possible use cases

A requirement may be either covered by one or multiple Tests. In fact, the status of a given requirement goes way further than the basic covered/not
covered information: it will take into account your test results.

As soon as you start running your Tests, the individual test result may be one of many and be very specific to your use case.

To make your analysis even more complex, you may be using sub-requirements and executing related Tests.

Requirements may be validated directly or indirectly, through the related sub-requirements and associated Test cases.

Thus, how do all these factors contribute to the calculation of a requirement status? How is evaluated the status of some Test?

Let’s start by detailing the different possible values Test, Test Step and requirement statuses. In the end, we’ll see how they’ll impact on the calculation of
the coverage status of a requirement in some specific version or Test Plan.

Overview of statuses
Whenever talking about statuses, we may be talking about statuses of requirements, Tests, Test Runs and Test Steps.

The status of a requirement depends on the status of the "related" Tests.

The status of a Test depends on the status of the "related" Test Runs, which in turn depend on the recorded Test Step statuses for each one of them.

Test status

The status of a Test tells you information about its current consolidated state (e.g. latest record result, if existent). Was it is executed? Successfully? In
which version?

Thus, whenever speaking about the "status of a Test" we need to give it some additional context (e.g. "In which version?") since it depends on "where" and
how you want to analyze it.

Xray provides some built-in Test statuses (which can’t be modified nor deleted):

 TODO – Test is pending execution; this is a non-final status;
 EXECUTING – Test is being executed; this is a non-final status; at least one step is mapped to a non-final Test Run status

 FAIL – Test failed
 ABORTED – Test was aborted

 PASS – Test passed successfully

Each of this status maps to a requirement status, accordingly with the following table.

Test status Final
status?

Requirement status mapped to

PASS yes OK

FAIL yes NOK

TODO no NOTRUN

Please note

Whenever we're speaking about the status associated with a requirement or with a Test (and even with a Test Set), we may be talking about diff
 things:erent

(coverage) for some version, taking into account executions made for that version of the Tests that validate the requirementstatus
workflow status associated to the requirement issue (e.g., "New", "In Progress", "Closed")

specific custom fields for those issue types (e.g. "Requirement Status", "TestRunStatus" and "Test Set Status")

The current page details the first one, i.e. the status of the entities based on the executions made in some context.

The are fields, "Requirement Status", "TestRunStatus" and "Test Set Status" custom fields calculated usable in the context of requirement,
, that calculate the "status" (not the workflow status) of the requirement/Test/Test Set for a specific Test and Test Set issues, respectively

version, considering the executions (i.e., test runs) for that version. The version for which it calculates the status depends on the behavior
defined in a global configuration ().see configuration details here

These fields will show the calculated status for the respective entity, for some specific version; they're just used to have a quick glimpse of the
status of each entity, for example right in the view issue screen; therefore their usage is limited.

More information on these and other custom fields can be found . here

The status of a Test indicates its "latest state" in some given context ().e.g. for some version, some Test Plan and/or in some Test Environment

https://docs.getxray.app/display/XRAY/Configuring+Statuses+Custom+Fields
https://docs.getxray.app/display/XRAY/Using+custom+fields

ABORTED yes NOTRUN

EXECUTING no NOTRUN

custom custom OK, NOK, NOTRUN or UNKNOWN

The status (i.e. result) of a Test Run is an attribute of the Test Run (a “Test Run” is an instance of a Test and is not a Jira issue) and is the one taken into
account to assess the status of the requirement.

Managing Test Statuses

Creating new Test (Run) statuses may be done in the configuration section of Xray.Manage Test Statuses

Whenever creating/editing a Test status, we have to identify the Requirement status we want this Test status to map to.

One important attribute of a Test status is the “final” attribute. If “Final Statuses have precedence over non-final” flag is enabled, then Xray will give priority
to final statuses whenever calculating the status of a Test. In other words, if you have a Test currently in some final status (e.g. PASS, FAIL) and you
schedule a new Test Run for it, then this Test Run won't affect the calculation of the status of the Test.

This may be used, when users prefer to take into account only the last final/complete recorded result and want to discard Test Runs that are in an
intermediate status (e.g. EXECUTING, TODO).

Please note

Do not mix up the status of a given test with the " " custom field, which shows the status of a given Tests for a specific version, TestRunStatus
depending on the configuration under . More info on this custom field .Configuring Statuses Custom Fields here

The "TestRunStatus" custom field is a calculated field that and that takes into account several Test Runs; the belongs to the Test issue
"TestRunStatus" does not affect the calculation of the status of requirements.

http://confluence.xpand-addons.com/display/XRAY/Manage+Test+Statuses
https://docs.getxray.app/display/XRAY/Configuring+Statuses+Custom+Fields
https://confluence.xpand-addons.com/display/XRAY/Using+custom+fields

Test Step statuses

The status of a Test Step indicates the result obtained for that step for some Test Run.

Xray provides some built-in Test Step statuses (which can’t be modified nor deleted).

Test Step status Test status

PASS PASS

TODO TODO

EXECUTING EXECUTING

FAIL FAIL

custom custom

Managing Test Step Statuses

Creating new Test Step statuses may be done in the configuration section of Xray.Manage Test Step Statuses

Whenever creating/editing a Test Step status, we have to identify the Test status we want this step status to map to.

Statuses reported at Test Step level will contribute to the overall calculation of the status of the related Test Run.

http://confluence.xpand-addons.com/display/XRAY/Manage+Test+Step+Statuses

Note that native Test Step statuses can’t be modified nor deleted.

Requirement statuses

The status of a requirement tells you information about its current state, from a quality perspective. Is it covered with test cases? If so, has it been
validated successfully? In which version?

Thus, whenever speaking about the "status of a requirement" we need to give it some additional context (e.g. "In which version?") since it depends on
"where" and how you want to analyze it.

In Xray, for a given requirement, considering the default settings, its coverage status may be:

OK – requirement has been successfully and fully validated; all the Tests associated with the Requirement are PASSED
NOK – requirement is unsuccessfully validated; at least one Test associated with the Requirement is FAILED
NOTRUN – requirement has not been validated completely; at least one Test associated with the Requirement is or ABORTED and TODO
there are no Tests with status FAILED
UNKNOWN – requirement is in an unknown state; at least one Test associated with the Requirement is UNKNOWN and there are no
Tests with status FAILED
UNCOVERED – requirement is not covered with tests; the Requirement has no Tests associated to it

It’s not possible to create custom requirement statuses.

You can see that in order to calculate a requirement coverage status, for some specific system version, we “just” need to take into account the status of
the related Tests for that same version. We’ll come back to this later on.

Calculation of the status for a given Test Run
The status of a given Test Run is an attribute that is often calculated automatically based on the respective recorded step statuses. You can also enforce a
specific status for a Test Run, which in turn may implicitly enforce specific step statuses (e.g., setting a Test Run as "FAIL" can set all steps as "FAIL").

The status of a requirement indicates its coverage information along with its "state", depending on the results recorded for the Tests that do
validate it.

The status of a requirement is evaluated in some given context (e.g. for some version, some Test Plan and/or in some Test Environment).

Please note

Do not mix up the status of a given requirement with the "Requirement Status" custom field, which shows the status of a given requirement for a
specific version, depending on the configuration under . More info on this custom field .Custom Fields here

https://docs.getxray.app/display/XRAY/Configuring+Statuses+Custom+Fields
https://docs.getxray.app/display/XRAY32/Custom+Fields
https://confluence.xpand-addons.com/display/XRAY/Using+custom+fields

1.
2.

a.

b.
c.
d.
e.

This calculation is made by following these rules:

Obtain the test status mapped to each reported test step status; this is important as the actual test step statuses are not directly compared
Compare all the the previously mapped test statuses together

if any of these statuses (e.g., "PASS") is in turn mapped to the coverage status "OK", then the other status wins; if both are mapped to
"OK" then the highest ranked wins
if any of these statuses is "FAIL", then the Test Run status will be "FAIL"
if any of these statuses is in turn mapped to the coverage status "NOK", then the Test Run status will be that one
if any of theses statuses is final, then wins over non-final ones
of these statuses, the status with the highest ranking wins

The order of the steps is irrelevant for the purpose of the overall Test Run status value.

Consequences:

if any test step status is "FAIL" then the calculated status for the Test Run will be "FAIL"
if any of the test steps "contributes negatively" (i.e., is mapped to a Test status associated with the NOK coverage), then the status of Test Run
will correspond to the mapped Test status of that step
the Test Run will have status "PASS" if all the steps are marked as "PASS"
the calculated status for the Test Run will only be "EXECUTING" if there is at least one step in "EXECUTING" or "TODO" (or a similar custom
test step status) and all other steps are in "PASS" or equivalent (i.e., associated to the "OK" coverage status)

Configuration Example 1

The following table provides some examples given the Test Step Statuses configuration shown above.

Example
#

Statuses of the steps
/contexts

(the order of the steps
/contexts is irrelevant)

Calculated value for the
status of the Test Run

Why?

1
PASS
PASS
PASS

PASS All steps are PASS, thus the joint value is PASS

2
PASS
TODO
PASS

EXECUTING At least one step status (i.e. TODO) is mapped to a non-final Test status

3
PASS
FAIL
PASS

FAIL One of the step statuses (i.e. FAIL) has higher ranking than the other ones

4
XPASS
FAIL
PASS

FAIL Since one of the steps is FAIL, then the run will be marked as FAIL.

5
FAIL
XPASS
FAIL

FAIL Since one of the steps is FAIL, then the run will be marked as FAIL.

6
XFAIL
(=>MYFAIL=>NOK)
XPASS2
(=>MYFAIL=>NOK)
XPASS (=>FAIL=>NOK)

FAIL All mapped statuses map to a test status that in turn is associated to "NOK". Since
one of them is FAIL, then the run will be marked as FAIL.

Configuration Example 2

Let's consider the following configuration.

Example
#

Statuses of the
steps/contexts

(the order of the
steps/contexts is
irrelevant)

Calculated value for
the status of the
Test Run

Why?

1.

2.
3.

4.

1.

2.
a.
b.
c.

1
DUMMY_P2
(=>CUSTOM_PAS
S2=>OK)
DUMMY_P1 (=>C
USTOM_PASS=>
OK)

CUSTOM_PASS2 We can see that both steps contribute in a "positive way" (i.e., they were successful as ultimately
they are linked to successful coverage impact).

Both statuses mapped to these test step statuses are associated with the "OK" coverage; as
CUSTOM_PASS2 has higher ranking than CUSTOM_PASS, the run will be marked as
"CUSTOM_PASS2".

2
DUMMY_P2
(=>CUSTOM_PAS
S2=>OK)
DUMMY_P1 (=>C
USTOM_PASS=>
OK)
PASS
(=>PASS=>OK)

CUSTOM_PASS2 Similary to the previous example. Any status wins the "PASS" status.

3
DUMMY_F2
(=>CUSTOM_FAI
L2=>NOK)
DUMMY_F1
(=>CUSTOM_FAI
L=>NOK)

CUSTOM_FAIL2 We can see that both steps contribute in a "negative way" (i.e., they were not successful as
ultimately they are linked to unsucessful coverage impact).

Both statuses mapped to these test step statuses are associated with the "NOK" coverage; as
CUSTOM_FAIL2 has higher ranking than CUSTOM_FAIL, the run will be marked as
"CUSTOM_FAIL2".

Calculation of the status for a given Test
It is possible to calculate the status of a Test either by Version or Test Plan, in a specific Test Environment or globally, taking into account the results
obtained for all Test Environments.

:Analysis

By Version: For a given Test X, in order to calculate the coverage status for version V, we need to evaluate the related Tests Runs that were
executed on that same version V. A special case is whenever you don't have versions or simply don't want to calculate the status based on a
version (i.e. "None (latest execution)")
By Test Plan: For a given Test X, in order to calculate the coverage status for Test Plan TP, we need to evaluate the related Tests Runs that
were executed on Test Executions associated with Test Plan TP.
On a specific Test Environment: For a given Test X, if a specific Environment is also chosen, then only Test Runs from Test Executions with
this Environment will be considered. In case no Environment is specified then all Test Executions are considered (more info).here

What affects the calculation:

the setting "Final statuses have precedence over non-final statuses" in Xray administration settings, in the tab "Test Statuses" (enabled by default)
the existence of Test Runs for different Test Environments, in case the analysis is made for "All Environments"

Calculate the status of some Test, in version V or Test Plan TP, for Test Environment TE

This takes into account Test Runs in version V (as a result of Test Executions in version V) or Test Runs in Test Plan TP (within Test Executions
associated with Test Plan TP)
If Test Environment is chosen, then only Tests Runs on that Environment (e.g. TE) will be considered
If "Final statuses have precedence over non-final statuses" is true, then:

final Test Run statuses will have higher ranking than non-final ones
only the latest Test Run is taken into account based on its "finished on" date

If "Final statuses have precedence over non-final statuses" is false, then:
only the latest Test Run is taken into account based on its "created" date (i.e. the creation date of the related Test Run entity - this
happens when a Test Run is first executed, or when the user navigates into the execution screen)

Calculate the status of some Test, in version V or Test Plan TP, for "All Environments"

calculate the Test status for each Test Environment, based on all the implicit Test Environments from the relevant Test Executions (i.e. Test
Executions in version V or Test Executions associated with Test Plan TP)
calculate the joint value for the Test status

PASS has lowest ranking (i.e. for the calculated to be PASS, all calculated statuses must be PASS in the different Test Environments)
if one is FAIL, then the calculated value will be FAIL
otherwise, use the ranking of Test statuses

http://confluence.xpand-addons.com/display/XRAY/Working+with+Test+Environments

1.
2.
3.

1.
2.
3.

1.
2.
3.
4.

1.
2.
3.
4.

1.
2.
3.

1.
2.
3.

1.
2.
3.
4.

1.
2.
3.
4.

Examples

The following table provides some examples given the Test Statuses configuration shown above in the section.Managing Test Statuses

Example
#

Statuses of the
Test Runs

(ordered by time
of execution
/creation,
ascending)

Final statuses have
precedence over
non-final statuses

Calculated
value for the
status of the
Test

Why?

1a
PASS
PASS
TODO

true PASS Latest Test Run (2) having a final status was PASS.executed

1b
PASS
PASS
TODO

false TODO Latest Test Run (3) was TODO.created

2a
PASS (env1)
MYPASS2 (env2)
TODO (env2)
PASS (env3)

true MYPASS2 Latest executed final Test Runs on each environment were PASS,
MYPASS2, and PASS respectively.

Since MYPASS2 (2) has a higher ranking then the calculated status will be
MYPASS2.

2b
PASS (env1)
MYPASS2 (env2)
TODO (env2)
PASS (env3)

false TODO Latest Test Runs on each environment were PASS, TODO, and created
PASS respectively.

Since PASS has the lowest ranking, then TODO (3) will "win" and then the
calculated status will be TODO

3
PASS (env1)
TODO (env2)
PASS (env3)

true TODO Latest Test Runs on each environment were PASS, TODO, and created
PASS respectively.

Although Test Environment "env2" has only a non-final Test Run, since there
is no other Run for that environment, then it will be considered as the
calculated status for that environment.

Since PASS has the lowest ranking, then TODO (2) will "win" and then the
calculated status will be TODO.

4
PASS (env1)
FAIL (env2)
PASS (env3)

true (or false) FAIL Latest executed (or created) final Test Runs on each environment were
PASS, FAIL, and PASS respectively.

Since the calculated status for one of the environments is FAIL, then the
calculated status will be FAIL.

5
PASS (env1)
MYPASS2 (env2)
TODO (env2)
MYFAIL (env3)

true MYPASS2 Latest executed final Test Runs on each environment were PASS,
MYPASS2, and MYFAIL respectively.

MYPASS2 has a higher ranking than the other ones, thus the overall
calculated value will be MYPASS2.

6
PASS (env1)
MYPASS2 (env2)
TODO (env2)
MYFAIL (env3)

false MYFAIL Latest Test Runs on each environment were PASS, TODO, and created
MYFAIL respectively.

MYFAIL has a higher ranking than the other ones, thus the overall calculated
value will be MYFAIL.

Calculation of the status for a given requirement
It is possible to calculate the status of a Requirement either by Version or Test Plan, in a specific Test Environment or globally, taking into account the
results obtained for all Test Environments.

 Analysis :

1.

2.

3.
4.

By Version: For a given requirement X, in order to calculate the coverage status for version V, we need to evaluate the related Tests statuses
that were executed on that same version V.
By Test Plan: For a given requirement X, in order to calculate the coverage status for Test Plan TP, we need to evaluate the related Tests
statuses that were executed on Test Executions associated with Test Plan TP.
On a specific Test Environment: For a given Test X, if a specific Environment is also chosen, then only Test Runs from Test Executions with
this Environment will be considered. In case no Environment is specified then all Test Executions are considered (more info).here

The algorithm is similar to the overall calculation of the Test status taking into account the results obtained for different Test Environments.

In other words, the status for each linked and "relevant" Test case is calculated and in the end a joint calculation is done for a virtual Test case. The
requirement status will correspond to the mapped value for the status that was calculated for this virtual Test.

The Tests that will be considered as covering the requirement are not just the ones directly linked to the requirement. In fact, they may either be direct
ones or ones linked to sub-requirements. This list can be further restricted if Test Sets are being used for defining the scope of coverage (i.e. the list of
Tests relevant for the coverage calculation for some version).

 Algorithm :

Obtain the list of Tests that directly or indirectly through Sub-Requirements (info) cover the requirementhere
This depends on the Requirement Coverage configuration

Calculate the Test status for all the Tests individually, in version V or Test Plan TP
This takes into account Test Runs in version V (as a result of Test Executions in version V) or Test Runs in Test Plan TP (within
Test Executions associated with Test Plan TP)
If a specific Environment is also chosen, then only Test Runs from Test Executions with this Environment will be considered. In
case no Environment is specified then all Test Executions are considered (more info).here

Calculate the "joint" status of all the previous Test statuses (i.e. by comparing together each Test status)
Calculate the requirement status mapped to the previous calculated Test status

What affects the calculation:

the requirement coverage strategy defined in the respective setting, in Xray administration settings, in the tab "Requirement Coverage" (more info
)here

the strategy is used to find out the relevant Tests considered for the calculation
the separation of concerns setting, in Xray administration settings, in the tab "Requirement Coverage" (more info)here

this affects how the status of a Test Run contributes to the status of each linked requirement; if disabled, users can enforce a specific
mapping for each requirement, otherwise the Test Run status will contribute in the same way to all the linked requirements

indirectly, the setting "Final statuses have precedence over non-final statuses" in Xray administration settings, in the tab "Test Statuses" (enabled
by default)
the existence of Test Runs for different Test Environments, in case the analysis is made for "All Environments"

Requirements and sub-requirements conjunction

When a requirement has some sub-requirements, then the calculated status for the parent requirement depends not only on its status calculated per-si but
also on the status of each individual sub-requirement.

The calculation follows the rules described in the following table.

REQ \ SUB-REQ OK NOK NOT RUN UNKNOWN UNCOVERED

OK OK NOK NOT RUN UNKNOWN OK

NOK NOK NOK NOK NOK NOK

NOT RUN NOT RUN NOK NOT RUN UNKNOWN NOT RUN

UNKNOWN UNKNOWN NOK UNKNOWN UNKNOWN UNKNOWN

UNCOVERED OK NOK NOT RUN UNKNOWN UNCOVERED

From another perspective, you would obtain the same value for the calculation of the status of the parent requirement if you consider that it is being
covered by all the explicitly linked Tests and also the ones linked to sub-requirements.

 Consequences :

http://confluence.xpand-addons.com/display/XRAY/Working+with+Test+Environments
https://docs.getxray.app/display/XRAY/Coverage+Analysis
http://confluence.xpand-addons.com/display/XRAY/Requirements+Coverage
http://confluence.xpand-addons.com/display/XRAY/Working+with+Test+Environments
https://confluence.xpand-addons.com/display/XRAY/Requirements+Coverage#RequirementsCoverage-RequirementCoverageStrategy
https://confluence.xpand-addons.com/display/XRAY/Requirements+Coverage#RequirementsCoverage-SeparationofConcerns

1.
2.
3.

1.
2.
3.

1.
2.
3.

1.
2.

a.
3.

a.
b.

1.
2.

a.
3.

a.
b.

1.
2.

a.
3.

a.

1.
a.

2.
a.

b.
3.

a.
4.

a.

the parent requirement is OK if it is OK and the sub-requirements are either UNCOVERED or also OKper se
the parent requirement is NOK if it is NOK or if any of the sub-requirements is NOKper se
the parent requirement is only UNCOVERED if neither the parent requirement is covered nor the sub-requirements are coveredper se

Examples

The following table provides some examples given the Test Statuses configuration shown above in the section.Managing Test Statuses

Example
#

Statuses of the related Tests

(sub-requirements, whenever
are present using the notation
subReqX)

Calculated value for
the status of the
requirement

Why?

1
PASS
PASS
PASS

OK All Tests are passed (it is similar to having just one virtual test that would be considered
PASS and thus mapped to the OK status of the requirement)

2
PASS
PASS
TODO

NOT RUN One of the Tests (3) is TODO, which has higher ranking than PASS.

3
PASS
PASS
FAIL

NOK One of the Tests (3) is FAIL, which has higher ranking than PASS.

4
PASS
subReq1 => OK

PASS
subReq2 => NOK

PASS
FAIL

NOK One of the Tests (3b) is FAIL, thus subReq2 will be considered as NOK. Since it is
NOK, then the parent requirement status will be NOK.

5
PASS
subReq1 => NOTRUN

TODO
subReq2 => OK

PASS
PASS

NOT RUN One of the subRequirements (subReq1) is NOT RUN, thus the calculated status,
whenever doing the conjunction with the parent requirement status, will be NOT RUN.

6
PASS
subReq1 => UNCOVERED

(no Tests associated)
subReq2 => UNCOVERED

(no Tests associated)

OK Since all sub-requirements are uncovered and the parent requirement is covered
directly by one Test (1), which is currently PASS, then the calculated "OK" status will be
based on that Test.

Setup information for some possible use cases
I want to skip some steps and proceed as they didn't exist

create a "Test Step Status" (e.g. "SKIP"), mapped to the Test Status "PASS"
I want to fail a Test Run but I want to mark the requirement as being NOT OK because this failure can be discardeddon't

create a "Test Status" (e.g. "FAIL_DISCARD") , non-final and mapped to the requirement status "UNKNOWN"; setting the status as non-
final will give priority to other Test Runs you may have for that Test, If “Final Statuses have precedence over non-final” flag is enabled
create a "Test Step Status" (e.g. "IRRELEVANT_FAIL") and map it to the Test Status created in the previous step

I want to always see, for a given Test, the status of Test based on the last run scheduled for it, no matter if it was completed (i.e. in a final status)
or not

just uncheck the setting “Final Statuses have precedence over non-final”
I want to execute some steps, set them as failed or passed, but I don't want them to reflect immediately in the status of the Test Run

Rationale

Even if you have sub-requirements, when you have tests that are directly linked to the parent requirement, Xray assumes that you are validating
the requirement directly. Thus, it's irrelevant if the sub-requirements are uncovered by tests.

4.

a.

b.

create custom, non-final, Test statuses for passing and failure (e.g. "MYPASS", "MYFAIL"), mapped to the OK and NOK requirement
statuses, respectively
create your own custom Test Step statuses for passed and failure (e.g. "PASS_CONTINUE" and FAIL_CONTINUE"), mapped to the
previously created Test statuses

	Understanding coverage and the calculation of Test and requirement statuses

