Developing and testing APIs using Postman

® Overview
© Concepts
© Implementing tests
© Integrating with Xray
® Requirements
® Example
© Postman Echo API
® Tips
* References

Overview

Postman, more than a utility, is a collaboration platform for developing APIs.

Normally, it is used as a way to quickly interact with existing APIs without having to code HTTP requests by hand.
It provides support for HTTP based APIs, including REST and GraphQL.

Postman also provides the ability to write tests and use Chai assertions, as seen on these Postman test examples.

With Postman, comes also a built-in (test) collection runner; it is also possible to execute tests from the outside, using a CLI tool named Newman.

Concepts

® request: an API request (e.g. HTTP POST on some URL, with some values)
© authentication: authentication for the API request (e.g. HTTP basic auth, etc); can be defined at multiple levels and inherited
collection: a way of grouping multiple requests
folders within the collection: a way to better organize requests within the collection
variables: can be defined at multiple levels (e.g. global, collection, environment, local, ...)
test: a test; can be defined at request, folder or collection level
pre-request script: some code execute before each test; can also be defined at request, folder or collection level
environment: an abstraction of some test environment that describes a context for running the requests; it consists of one description plus a set of
variables with their corresponding values

Implementing tests
Testing is achieved through the usage of scripts.
Tests can be implemented using Javascript and making use of Postman APIs/objects assisted by Chai assertions.

One or more tests can be defined at the request level, or even at the whole collection level.

History Collections APIs » GET Request
<+ New Collection Trash
GET v https://postman-echo.com/get?foo1=bar1&foo2=bar2
= Postman Echo ¥
SRS Params @ Authorization Headers (6) Body Pre-request Script Tests ® Settings
> BB Request Methods
a 1 |pm.test("response is ok", function () {
» B Headers 2 pm. response.to.have.status(200);
300
> B Authentication Methods 4
5 m.test("response body has json with request queries", function
> B Cookie Manipulation P ¢ P v ;) . d ' q. o R
6 pm. response. to.have.jsonBody('args.fool’, ‘barl')
> M Utilities 7 .and.have.jsonBody('args.foo2', 'bar2');
8 1 1);
> Bm Utilities / Date and Time
> Bm Utilities / Postman Collection
> B Auth: Digest

Pre-request scripts may be useful as a means to initialize some data before the test or to implement some test setup code.

Variables can be defined at multiple levels and can be used to make maintenance easier; the sample applies to authentication, which can also make use
of variables.

A test is defined by using "pm.test()".

https://www.postman.com/
https://learning.postman.com/docs/writing-scripts/test-scripts/
https://www.chaijs.com/api/bdd/
https://learning.postman.com/docs/writing-scripts/script-references/test-examples/
https://learning.postman.com/docs/running-collections/intro-to-collection-runs/
https://learning.postman.com/docs/running-collections/using-newman-cli/command-line-integration-with-newman/
https://learning.postman.com/docs/sending-requests/requests/
https://learning.postman.com/docs/sending-requests/variables/
https://learning.postman.com/docs/writing-scripts/test-scripts/
https://learning.postman.com/docs/writing-scripts/pre-request-scripts/
https://learning.postman.com/docs/sending-requests/managing-environments/
https://learning.postman.com/docs/writing-scripts/intro-to-scripts/
https://learning.postman.com/docs/writing-scripts/script-references/postman-sandbox-api-reference/
https://www.chaijs.com/api/bdd/

example of a test that looks at the response's HTTP status code

pmtest("response is ok", function () {
pm response. t 0. have. st at us(200) ;

1)

In Postman, quoting Postman documentation, the pmobject encloses all information pertaining to the script being executed and allows one to access a
copy of the request being sent or the response received. It also allows one to get and set environment and global variables.

Therefore, pmcan be used to access the response, to perform assertions or even to make some requests.

Integrating with Xray

Integrating with Xray, in order to have visibility of API testing results in Jira, can be done by simply submitting automation results to Xray through the REST
API or by using one of the available CI/CD plugins (e.g. for Jenkins).

This can be achieved using Newman and one of its reporters capable of generating a JUnit XML file.

Requirements

® Postman

®* Newman

® newman-reporter-junitxray or newman-reporter-junitfull
® Xray Test Management Jenkins plugin (optional)

Example

Postman Echo API

In this example, we're going to use Postman' sample Echo API as a way to showcase some tests and their integration with Xray.

The Postman Echo API provides a set of endpoints that we'll exercise.

We start by cloning an existing Postman collection from a template and importing it to Postman.

Runin...

O Postman for Web

.’ Postman for Mac

Don't have the app yet?
Get the app

https://learning.postman.com/docs/running-collections/using-newman-cli/command-line-integration-with-newman/
https://www.npmjs.com/package/newman-reporter-junitxray
https://www.npmjs.com/package/newman-reporter-junitfull
https://docs.getxray.app/display/XRAY600/Integration+with+Jenkins
https://learning.postman.com/docs/developer/echo-api/
https://docs.postman-echo.com/?version=latest
https://explore.postman.com/templates/1358/postman-echo

The collection contains a request per each endpoint, where each request has one or more tests.

88 MyWorkspace ¥ & Invite

NEW™ import Runner v

Q
GET GET Request X e
History Collections APIs » GET Request
=+ New Collection Trash
GET v httpsy/postman-echo.com/get?foot=bar1&foo2=bar2
Postman E
. a5 Postma cho *
37 requests Params ® Authorization Headers (6) Body Pre-request Script Tests ® Settings
~ M Request Methods Query Params
GET GET Request KeY VALUE DESCRIPTION
POST Raw Text foo1 bar1
POST Form Data
foo2 bar2

PUT PUT Request
PATCH PATCH Request
DEL DELETE Request
» M Headers
» M Authentication Methods
» M Cookie Manipulation
> m Utilities
» M Utilities / Date and Time
» M Utilities / Postman Collection

» M Auth: Digest

GET v https://postman-echo.com/get?foo1=bar18&foo2=bar2

Params @ Authorization Headers (6) Body Pre-request Script Tests ® Settings

pm.test("response is ok", function () {
pm. response.to.have.status(200);

3

pm.test("response body has json with request queries", function () {
pm. response.to.have. jsonBody('args.fool', 'barl')
.and.have.jsonBody('args.foo2', 'bar2');

o NV A WNBRE

3

In the previous example, we can see two tests: one for validating a successful HTTP request based on the status code and another that checks the
response's JSON content.

The collection (or a subset of its tests) can be run using the Collection Runner.

New Impo Runner My Workspace ¥
el Postman Echo X
History Collections APIs
New Collect Trash
+ New Collection ras| — ...
&f002=b
. a5 Postman Echo *
S N Documentation ~ Monitors ~ Mocks ~ Changelog |
—_— re-reque
v B Request Methods |8 Learnn document your requests
GET GET Request
Kd
POST Raw Text Postman Echo is service you can use to test your REST
clients and make sample API calls. It provides
POST Form Data endpoints for GET , POST, PUT , various auth
st PUT Request mechanisms and other utility endpoints.
The documentation for the endpoints as well as
PATCH PATCH Request example responses can be found at https://postman
DEL DELETE Request echo.com
» W Headers
I Request Methods
» B Authentication Methods
B Headers
» B Cookie Manipulation
BB Authentication Methods
> Utilities
BB Cookie Manipulation
> Utilities / Date and Time
I Utilities
» 0 Utilities / Postman Collection
B Utilities / Date and Time
» B Auth: Digest

My Workspace ~

Choose a collection or folder

Q

> GET GETRequest

< Postman Echo » POST Raw Text

> POST Form Datz
B Request Methods orm Data

B Headers > PUT PUTRequest

IS Authentication Methods » PATCH PATCH Request

‘ookie Manipulation > DEL DELETE Request

tilties

> GET Request Headers

> GET Response Headers

/vauumgm No Environment - L enr sasic Auth
serations |11 Digestauth Success
> GET Hawk Auth
Dely 0 ms
> GET OAUth1.0 (verify signature)
Data Select File > GET SetCookies

> GeT GetCookies
Save responses @

Keep variable values @ > GET Delete Cookies

> GET Response Status Code
Run collection without using stored cookies P

> GET Streamed Response
Save cookies after collection run @) P

> GeT Delay Response
> GET GerUTFB Encoded Response

» GET GZip Compressed Response

[E<B<E<E< NN N NN E<E<N<H<N<N<N<N<]

Deflate Compressed Response

@ @ Postman Echo Notmianmer -~

LA J——
L] @ response json should return the date component
@ GeT Before comparisons. 2000k 12ms 2268
@ response is ok

B response sonsho

s timestamp s

@ cor A comparsons 200k @ 121ms @ 3548
@ responseson
8 responseson should sa timestamp s ok afe target
[etr— 200K @ 109ms @ 298
& responseison
8 response sonshould say timestam < not b sart and end
W o Leapyearcheck 200k @ 133ms @ us8
& responseson
W responsesonshould say mestamp s witinlap year
@ 051 Transorm cotection rom fomat v 012 Dthorrouns @ 107ms @ 1158
B response s o | AsersonEror: expected response o have status code 200 bt ot 404
. oo Assertontiror tnfoschemt
@ o Transorm coecion from format 2 0 vt s @ 218
B response s o | AsersonEror: expected response o have st code 200 bt ot 404
[-
@ o7 Dipeshun Reguest 401 Unautrorized @ 106ms @ 3508

W response coders o

The runner shows the overall count for the number of passed and failed tests. We can also see the assertion error on failed tests; in this case, saving the
response (setting the proper flag above) can help us better understand what is happening.

Running the tests can also be done from the command line or from within Jenkins (or any other CI/CD tool). This can be achieved using Newman.
In order to run Newman, we need to provide a path or a URL to our collection.

In this case, we'll obtain a public link to it.

https://learning.postman.com/docs/running-collections/using-newman-cli/command-line-integration-with-newman/

rusunal Luiv

History Collections APIs API T

New Collecti Trash

Postman Echo %

v N)
37 requests voo Documentation

v B Request Methods I ~ Share Collection I |E Learn howtodo

GET GET Request Manage Roles

Postman Echo is serv

POST Raw Text AI R N
ename clients and make san

SHARE POSTMAN ECHO

To a workspace Embed Get public link

Generate a shareable public link to a static snapshot of your collection. You can manage a complete list of your public collection links from your Postman Dashboard.

https://www.getpostman.com/collections/c7334a5cf52a90639a48 Update Link] m

Then we need to decide which Newman reporter to use. Newman provides a built-in JUnit reporter; however, better alternatives exist such as junitxray or ju
nitfull.

(D Which Newman reporter should | use?

The standard Newman junit reporter produces <testcase> entries in the JUnit XML report that can be misleading as tests will be identified on
the Postman test description, which can be similar between different tests (e.g. "response is ok").

Therefore, two alternative reporters arise: newman-reporter-junitxray and newman-reporter-junitfull

"newman-reporter-junitxray” (simply known as "junitxray"), will create <testcases> per each request, which in the end will lead to corresponding
Test issues in Xray. This means that there won't be explicit visibility for each Postman test on that request, as they will be treated just as one.

"newman-reporter-junitfull” (simply known as "junitfull"), on the other hand, will produce one <testcase> per each Postman test, which will lead
to the same number of corresponding Test issues in Xray.

If you aim just to have high-level overview of the request, then "junitxray" reporter will be preferable; otherwise, "junitfull* may be a better option.

junit junitxray junitfull
tests
® 40 Tests (one per each PM test name ® 37 Tests (one per request) ® 90 Tests (one per each PM test)
/description)
generic <collection>.<pm_test_description> <collection>.<request_name> <folder_path>/<request_name>.
definition <pm_test_description>
field
"PostmanEcho.response is ok" "PostmanEcho.Object representation”
"Utilities / Date and Time / Object
representation.response is ok"
notes
® |eads to a collision of tests made for ® ignores folder path, which can lead to the ® can lead to many Test issues
different requests collision of requests having the same ® one Test issue per each PM test,
® ignores folder path, which can lead to the name identified by the full (folder) path of the
collision of requests having the same ® doesn't present the multiple PM tests request
name * few Tests, one per each request

® one Test issue per each PM test

https://www.npmjs.com/package/newman-reporter-junitxray
https://www.npmjs.com/package/newman-reporter-junitfull
https://www.npmjs.com/package/newman-reporter-junitfull
https://www.npmjs.com/package/newman-reporter-junitxray
https://www.npmjs.com/package/newman-reporter-junitfull

Installing Newman and its reporters

npminstall -g newran

install one of the follow ng ones
npminstall -g newran-reporter-junitxray
npminstall -g newran-reporter-junitfull

Whenever running Newman, we can specify one or more reporters (if we want to), including a CLI friendly one.

newran run https://ww. get post man. coni col | ecti ons/ c7334a5cf52a90639a48 -r 'cli,junitfull,junitxray' --reporter-
junitfull-export postman_echo_junitfull.xm --reporter-junitxray-export postman_echo_junitxray.xm -n 1

If using Jenkins, we need to configure a build step to execute "newman" command.
Build

Execute shell n

Command newman run https://www.getpostman.com/collections/c7334a5c£52a90639a48 -r 'cli,junitfull, junitxray'

--reporter-junitfull-export postman_echo_junitf

Importing results is as easy as submitting them to the REST API with a POST request (e.g. curl), or by using one of the CI plugins available for free (e.g. Xr
ay Jenkins plugin).

The following screenshots show the Jenkins configuration.

We could eventually fill/identify the Test Environment to associate to the Test Execution based on the Postman's Environment being used if it would make
sense for us to analyze the results on a per-environment basis.

Post-build Actions

Xray: Results Import Task

Jira Instance xray-vm

Format JUnit XML

Parameters
Import to Same Test Execution (]

When this option is check, if you are importing multiple execution report files using a glob expression,
the results will be imported to the same Test Execution

Execution Report File (file path with file name) ' postman_echo*.xml
Project Key CALC

Test Execution Key

Test Plan Key

Test Environments

Revision

Fix Version

A Test Execution will be created containing results for all tests executed. Actually, in our specific case and only for demonstration purposes, two Test
Executions would be created due to the fact that we're generating two JUnit XML files from the different Newman reporters.

Unstructured (i.e. "Generic") Test issues will be auto-provisioned the first time you import the results, based on the identification of the test (see notes for
possible Newman reporters above). The "Generic Definition" field on the Test issue is used as a way to uniquely identify the test.

https://docs.getxray.app/display/XRAY600/Import+Execution+Results+-+REST
https://docs.getxray.app/display/XRAY600/Integration+with+Jenkins
https://docs.getxray.app/display/XRAY600/Integration+with+Jenkins

{D Please note

Tests will be reused on subsequent result imports as long as you don't change what contributes to the calculation of the test's unique identifier (i.
e. "Generic Definition" field); otherwise, new Tests will be auto-provisioned.

Therefore, and depending on the Newman reporter being used, if you change the Postman test description or the folder containing the test, it
will lead to new Tests in Jira as Xray will consider them to be new.

In this example, we're looking at the Test Execution (and related Tests) created as a consequence of importing the JUnit XML report produced by the
Newman reporter newman-reporter-junitxray.

Calculator / CALC-7871

Execution results - postman_echo_junitxray.xml - [1597879559264]

Edit Q Comment Assign More v Start Progress Resolve Issue Close Issue Admin v

v Details
Type: [Test Execution Status: D (View Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None
Test Environments: None
Test Plan: None
v Description

Execution results imported from external source

v Tests

- Add v

Overall Execution Status

I
PASS 5 FAIL
Total Tests: 37
= Filter(s)
Bv Show entries Columns +
4 Rank Key Summary TestType #Req #Def Assignee Status

m} 1 CALC-7864 Time addition Generic 0 0 Administrator >

m} 2 CALC-7842 Transform collection from format v1 to v2 Generic 0 0 Administrator >

m} 3 CALC-7841 Get UTF8 Encoded Response Generic 0 0 Administrator >

m} 4 CALC-7863 Between timestamps Generic 0 0 Administrator >

m} 5 CALC-7862 POST Raw Text Generic 0 0 Administrator >

Within the execution screen details, you can look at the Test Run details which include the duration, overall result, and also any eventual error message.

https://www.npmjs.com/package/newman-reporter-junitxray

Calculator / Test Execution: CALC-7871 / Test: CALC-7834
Object representation

Execution Status [} PASS

Started On: 20/Aug/20 12:26 AM (2 Finished On: 20/Aug/20 12:26 AM
Affected Requirements

None

Comment Preview Comment v Execution Defects (0)

e Execution Details

Test Description

None

Custom Fields

There are no Test Run Custom Fields defined.

Test Details
Test Type: Generic
| Definition: PostmanEcho.Object representation |
Results
Context Output

TestSuite c8¢16569-a771-4ad3-874¢-9072351ff79a - Utilities / Date and Time -

L] Export Test as Text

Create Defect Create Sub-Task Add Defects

A Return to Test Execution

v

Execution Evidence (0)

Execute with Exploratory App 4 Previous

Assignee: Ad

rator
Executed By: Administrator

Tests -
environments:

Add Evidence v

Duration Status

Next b

Versions:

Revision:

0)

What would be the results if | used "newman-reporter-junitfull"?

If you would use "newman-reporter-junitfull”, you would obtain many more Test issues as seen ahead.

Some of these Tests would have the same Summary as it would be populated from Postman test's description.

Calculator / CALC-7870

Execution results - postman_echo_junitfull.xml - [1597879527362]

Edit QComment Assign More v StartProgress Resolvelssue Closelssue Admin v
v Details
Type: [Test Execution Status: CED (View Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None
Test Environments: None
Test Plan: None

v Description

Execution results imported from external source

v Tests

Overall Execution Status

8 2 PASS 8 FAIL

Total Tests: 90

= Filter(s)
g v
4 Rank Key Summary Test Type #Req #Def Assignee
(=R CAST the "foot" caokie has correct value Generic 0 0 Administrator
CALC-)) -
[m] 2 7820 response is ok Generic [0 Administrator
o 3 CALC- response is ok Generic 0 0 Administrator
7787
CALC- R) -
[m] 4 7742 response body has json with form data Generic [0 Administrator
CALC- . : ..
0O s 7786 the "foo1" cookie has correct value Generic 0 [Administrator

Calculator / Test Execution: CALC-7741 / Test: CALC-7790
response is ok

Execution Status [PASS

Started On: 18/Aug/20 12:54 PM (B Finished On: 18/Aug/20 12:54 PM

Affected Requirements

None

Comment Preview Comment v Execution Defects (0) Create Defect Create Sub-Task Add Defects

e Execution Details

Test Description

None

Custom Fields

There are no Test Run Custom Fields defined.

Test Details

Test Type: Generic

Utilities / Date and Time / Object representation.response is ok I

Results

Context Output

TestSuite 29 - Object representation -

Status

Export Test as Text

Columns
> | o
» |
» | o
> | -
» | o
a Return to Test Execution Execute with Exploratory App 4 Previous Ne
Assignee: Administrator Versic
Executed By: Administrator Revis
Tests -
environments:
v Execution Evidence (0) Add Evidenc

Duration Status

s6000ms (T

Tips

® After importing results, you can link Test issues to existing requirements or user stories, so that you can track coverage on real-time directly on
them

® You can map Postman's environment to Xray's Test Environment concept on Test Executions if you want to have visibility of the results on a per-
environment basis

® Multiple iterations/executions can be linked to an existing Test Plan, whenever importing the results

® |f you run the tests multiple times with "newman -n <number_of_iterations>" parameter, multiple entries will appear within the Results section of
the Test Run execution screen details

References

Postman

Postman SDK

Postman Echo API

Using Newman
newman-reporter-junitxray
newman-reporter-junitfull
Postman Quick Reference Guide

https://www.postman.com/
https://learning.postman.com/docs/writing-scripts/intro-to-scripts/
https://learning.postman.com/docs/developer/echo-api/
https://learning.postman.com/docs/running-collections/using-newman-cli/command-line-integration-with-newman/
https://www.npmjs.com/package/newman-reporter-junitxray
https://www.npmjs.com/package/newman-reporter-junitfull
http://The pm object encloses all information pertaining to the script being executed and allows one to access a copy of the request being sent or the response received. It also allows one to get and set environment and global variables.

	Developing and testing APIs using Postman

