
Testing mobile apps in the cloud (BrowserStack) using
Appium and Cucumber in Ruby
Overview
In this tutorial, we will create a test in Cucumber for Ruby in order to validate a simple mobile application using Appium and BrowserStack for cloud testing.

The test (specification) is initially created in Jira as a Cucumber Test complemented with a Pre-Condition; later on it is exported using the UI or the REST
API and run in BrowserStack mobile devices.

Requirements
Install Ruby (or JRuby)
install all dependencies using "bundle install", on the "android" sub-folder

Description
This tutorial is based on .BrowserStack's own tutorial for Appium/Cucumber/Ruby

You may start by cloning the repository .https://github.com/browserstack/cucumber-ruby-appium-app-browserstack

 git clone https://github.com/browserstack/cucumber-ruby-appium-app-browserstack
 cd android

We'll use the "android" example folder as basis and the "parallel" task that runs the tests in parallel.

We have to make some changes in order to make Cucumber generate a distinct JSON report per each device.

Rakefile was "hacked" in order to process the devices configured for the "parallel" task and related configuration file (i.e.).config/parallel.config.yml

The number of parallel jobs must be equal to the number of configured devices.

Please note

Within this tutorial, only one Test Execution will be used; it will contain one Test Run with all the results for the different used devices. Thus, the
overall test run status will be affected by the results made for all the devices.

Instead of this approach, a different one could be creating a Test Execution per each device. The steps would need to be slightly different.
namelly the submission process would need to use the standard or multipart Cucumber REST API endpoints, for each result file corresponding
to each device. This approach would give the ability to take advantage of Test Environments (more info in).Working with Test Environments

https://www.browserstack.com/app-automate/appium-cucumber
https://github.com/browserstack/cucumber-ruby-appium-app-browserstack
https://docs.getxray.app/display/XRAY600/Working+with+Test+Environments

Rakefile

require 'rake'
require 'parallel'
require 'cucumber/rake/task'
require 'yaml'

Cucumber::Rake::Task.new(:cukesingle) do |task|
 ENV['CONFIG_NAME'] ||= "single"
 task.cucumber_opts = ["--format=pretty -f json -o results.json", 'features/single.feature']
end

task :default => :single

Cucumber::Rake::Task.new(:local) do |task|
 task.cucumber_opts = ["--format=pretty -f json -o results.json", 'features/local.feature',
'CONFIG_NAME=local']
end

task :single, [:device] do |task,args|
 device = (args[:device] || "").gsub(' ','_')
 cuke_task = Cucumber::Rake::Task.new
 cuke_task.cucumber_opts = ["--format=pretty -f json -o device_#{device}.json", 'features/single.
feature']
 cuke_task.runner.run
end

task :parallel do |t, args|
 @num_parallel = 2

 Parallel.map([*1..@num_parallel], :in_processes => @num_parallel) do |task_id|
 ENV["TASK_ID"] = (task_id - 1).to_s
 ENV['name'] = "parallel_test"
 ENV['CONFIG_NAME'] = "parallel"

 TASK_ID = (ENV['TASK_ID'] || 0).to_i
 CONFIG_NAME = ENV['CONFIG_NAME']
 CONFIG = YAML.load(File.read(File.join(File.dirname(__FILE__), "./config/#{CONFIG_NAME}.config.yml")))
 caps = CONFIG['browser_caps'][(task_id-1)]
 ENV['DEVICE'] = caps['device']

 Rake::Task["single"].invoke(caps['device'])
 Rake::Task["single"].reenable
 end
end

task :test do |t, args|
 Rake::Task["single"].invoke
 Rake::Task["single"].reenable
 Rake::Task["local"].invoke
 Rake::Task["parallel"].invoke
end

You need to configure the BrowserStack user/key along with desired browser capabilities/devices.

1.
2.
3.

config/parallel.config.yml

server: "hub-cloud.browserstack.com"
user: "youruser"
key: "yourkey"

common_caps:
 "build": "cucumber-browserstack"
 "browserstack.debug": true

browser_caps:
 -
 "device": "Google Pixel"
 "app": "bs://6c31566b71e1ee4c5f7f5298c702c0de4c590000"
 "name": "parallel_test"
 -
 "device": "Google Nexus 6"
 "app": "bs://6c31566b71e1ee4c5f7f5298c702c0de4c590000"
 "name": "parallel_test"

In this tutorial we're using a from BrowserStack, that must be uploaded beforehand to BrowserStack. The hashed app id must wikipedia sample application
be configured accordingly on the previous configuration file.

Instead of using the provided "single.feature" file, we'll use JIRA and Xray as master of information.

In other words, in JIRA we'll:

create a story
create a Test for it
create a Pre-Condition and associate it to the previous Test

Although it's not needed, we will also create a blank Test Execution with the Test and we'll use it as basis in order to run and report our test results.

https://www.browserstack.com/app-automate/sample-apps/android/WikipediaSample.apk

After creating a Cucumber Test, of Cucumber Type "Scenario", in Jira, you can export the specification of the test to a Cucumber .feature file via the REST
API or the UI action from within the Test Execution issue.Export to Cucumber

The created file will be similar to the following:

features/single.feature

@CALC-2130
@REQ_CALC-2131
Feature: As a user, I can search in Wikipedia App

 Background:
 #@CALC-2133
 Given I try to search using Wikipedia App

 @TEST_CALC-2132
 Scenario: Search for a term
 When I type in "BrowserStack"
 Then I should see results

Tests can be run by execution rake's "parallel" task.

 bundle exec rake parallel

The previous task will generate a Cucumber JSON report per each target device.

zip browserstack.zip device_*.json

These files can be bundled in ZIP file and submitted to Xray using the "bundle" REST API endpoint (either by invoking the REST API directly or by using
one of the free add-ons for Jenkins/Bamboo).

Example for submission of results using "curl"

curl -H "Content-Type: multipart/form-data" -u user:password -F "file=@browserstack.zip" https://sandbox.xpand-
addons.com/rest/raven/1.0/import/execution/bundle

The execution screen details will not only provide information on the test run result, but also for each step.

For each device, a different "context" will appear along with the respective step results.

In BrowserStack you can see some info about it.

References
https://docs.cucumber.io/tools/ruby/
https://www.browserstack.com/app-automate/appium-cucumber
Testing in BDD with Gherkin based frameworks (e.g. Cucumber)
Exporting Cucumber Tests - REST
Import Execution Results - REST

Learn more

Please see for an overview on how to use Cucumber Tests with Xray.Testing in BDD with Gherkin based frameworks (e.g. Cucumber)

https://docs.cucumber.io/tools/ruby/
https://www.browserstack.com/app-automate/appium-cucumber
https://docs.getxray.app/pages/viewpage.action?pageId=81110657
https://docs.getxray.app/display/XRAY600/Exporting+Cucumber+Tests+-+REST
https://docs.getxray.app/display/XRAY600/Import+Execution+Results+-+REST
https://docs.getxray.app/pages/viewpage.action?pageId=81110657

	Testing mobile apps in the cloud (BrowserStack) using Appium and Cucumber in Ruby

