Testing mobile apps in the cloud (BrowserStack) using
Appium and Cucumber in Ruby

Overview

In this tutorial, we will create a test in Cucumber for Ruby in order to validate a simple mobile application using Appium and BrowserStack for cloud testing.

The test (specification) is initially created in Jira as a Cucumber Test complemented with a Pre-Condition; later on it is exported using the Ul or the REST
API and run in BrowserStack mobile devices.

G) Please note

Within this tutorial, only one Test Execution will be used; it will contain one Test Run with all the results for the different used devices. Thus, the
overall test run status will be affected by the results made for all the devices.

Instead of this approach, a different one could be creating a Test Execution per each device. The steps would need to be slightly different.

namelly the submission process would need to use the standard or multipart Cucumber REST API endpoints, for each result file corresponding
to each device. This approach would give the ability to take advantage of Test Environments (more info in Working with Test Environments).

Requirements

® |nstall Ruby (or JRuby)
® install all dependencies using "bundle install”, on the "android" sub-folder

Description

This tutorial is based on BrowserStack's own tutorial for Appium/Cucumber/Ruby.

You may start by cloning the repository https://github.com/browserstack/cucumber-ruby-appium-app-browserstack .

git clone https://github.conl browserstack/ cucunber-ruby-appi um app- br owser st ack
cd android

We'll use the "android" example folder as basis and the "parallel" task that runs the tests in parallel.
We have to make some changes in order to make Cucumber generate a distinct JSON report per each device.
Rakefile was "hacked" in order to process the devices configured for the "parallel" task and related configuration file (i.e. config/parallel.config.yml).

The number of parallel jobs must be equal to the number of configured devices.

https://www.browserstack.com/app-automate/appium-cucumber
https://github.com/browserstack/cucumber-ruby-appium-app-browserstack
https://docs.getxray.app/display/XRAY600/Working+with+Test+Environments

Rakefile

require 'rake'

require 'parallel’

require 'cucunber/rake/task’
require 'yam'

Cucunber: : Rake: : Task. new(: cukesi ngl e) do |task]|

ENV[' CONFI G NAME'] || = "single"
task. cucunber _opts = ["--format=pretty -f json -0 results.json", 'features/single.feature']
end

task :default => :single

Cucunber: : Rake: : Task. new(: | ocal) do |task]|

task. cucunber _opts = ["--format=pretty -f json -0 results.json", 'features/local.feature',
' CONFI G_NAME=! ocal ']
end

task :single, [:device] do |task, args]|

device = (args[:device] || "").gsub(' ',"'_")

cuke_task = Cucunber:: Rake:: Task. new

cuke_t ask. cucunber _opts = ["--format=pretty -f json -o device_#{device}.json", 'features/single.
feature']

cuke_t ask. runner.run
end

task :parallel do |t, args|

@umparallel =2

Parall el . map([*1.. @umparallel], :in_processes => @umparallel) do |task_id|
ENV["TASK_ ID'] = (task_id - 1).to_s
ENV[' name'] = "parallel _test"

ENV[' CONFI G NAME'] = "paral l el "

TASK ID = (ENV[' TASK_ID] || 0).to_i

CONFI G_NAME = ENV[' CONFI G_NAME']

CONFI G = YAM.. | oad(File.read(File.join(File.dirname(__FILE__), "./config/#{CONFI G NAME}. config.ym")))
caps = CONFI G ' browser_caps'][(task_id-1)]

ENV[' DEVICE'] = caps[' device']

Rake: : Task["si ngl e"].invoke(caps['device'])
Rake: : Task["single"].reenable
end
end

task :test do |t, args|
Rake: : Task["si ngl e"] . i nvoke
Rake: : Task["singl e"].reenabl e
Rake: : Task["l ocal "] . i nvoke
Rake: : Task["paral | el "].invoke
end

You need to configure the BrowserStack user/key along with desired browser capabilities/devices.

config/parallel.config.yml

server: "hub-cl oud. br owser st ack. cont
user: "youruser"
key: "yourkey"

comon_caps:
"bui I d": "cucunber-browserstack"
"browser st ack. debug": true

browser _caps:

"device": "Coogle Pixel"
"app": "bs://6c31566b71eleedc5f 7f 5298c702c0de4c590000"
"nane": "parallel _test"

“device": "Coogle Nexus 6"
"app": "bs://6c31566b71eleedc5f 7f 5298c702c0de4c590000"
"nanme": "parallel _test"

In this tutorial we're using a wikipedia sample application from BrowserStack, that must be uploaded beforehand to BrowserStack. The hashed app id must
be configured accordingly on the previous configuration file.

Instead of using the provided "single.feature" file, we'll use JIRA and Xray as master of information.
In other words, in JIRA we'll:

1. create a story

2. create a Test for it

3. create a Pre-Condition and associate it to the previous Test

Although it's not needed, we will also create a blank Test Execution with the Test and we'll use it as basis in order to run and report our test results.

o Calculator / CALC-2131
As a user, | can search in Wikipedia App

Edit () Comment Assign | More v Resolve Issue = Close Issue Admin v
Details
Type: [Story Status: D (View Workflow)
Priority: L Trivial Resolution: Unresolved
Affects Version/s: None Fix Version/s: v3.0
Component/s: None
Labels: None

Requirement Status:

Description
Click to add description
Test Coverage +
Create new Test Create new Sub Test Execution
Version v No Version & All Environments ~

L D Unresolved CALC-2132 Search for a term

https://www.browserstack.com/app-automate/sample-apps/android/WikipediaSample.apk

m Calculator / CALC-2132
Search for a term

Edit () Comment Assign = More ~ Resolve Issue = Close Issue Admin ~
Details
Type: [Test Status: G (View Workflow)
Priority: . Trivial Resolution: Unresolved
Affects Version/s: None Fix Version/s: v3.0
Component/s: None
Labels: None
TestRunStatus:
Description
Click to add description
Test Details
Type: Cucumber
Scenario Type: Scenario
Scenario: 1 When I type in "BrowserStack"
2 Then I should see results

Calculator / CALC-2133

use Wikipedia App

Edit () Comment Assign = More ~ Resolve Issue = Close Issue Admin ~
Details
Type: Pre-Condition Status: D (View Workflow)
Priority: 4 Trivial Resolution: Unresolved
Affects Version/s: None Fix Version/s: v3.0
Component/s: None
Labels: None
Description

Click to add description

Pre-Condition Details

Type: Cucumber

Condition: 1 Given I try to search using Wikipedia App

After creating a Cucumber Test, of Cucumber Type "Scenario”, in Jira, you can export the specification of the test to a Cucumber .feature file via the REST
API or the Export to Cucumber Ul action from within the Test Execution issue.

The created file will be similar to the following:

features/single.feature

@CALC- 2130

@REQ CALC- 2131

Feature: As a user, | can search in Wkipedia App
Backgr ound:

#@CALC- 2133
Gven | try to search using Wkipedia App

@rEST_CALC- 2132

Scenario: Search for a term
When | type in "Browser Stack"
Then | should see results

Tests can be run by execution rake's "parallel” task.

bundl e exec rake parallel

The previous task will generate a Cucumber JSON report per each target device.

zip browserstack.zip device_*.json

These files can be bundled in ZIP file and submitted to Xray using the "bundle” REST API endpoint (either by invoking the REST API directly or by using
one of the free add-ons for Jenkins/Bamboo).

Example for submission of results using "curl"

curl -H "Content-Type: nultipart/formdata"” -u user:password -F "fil e=@rowserstack. zi p" https://sandbox. xpand-
addons. com rest/raven/ 1. 0/inport/execution/bundl e

The execution screen details will not only provide information on the test run result, but also for each step.

For each device, a different "context" will appear along with the respective step results.

Calculator / Test Execution: CALC-2130 / Test: CALC-2132

!} Import Execution Results Export to Cucumber A Return to Test Execution
Search for a term
Context Duration Status
14 sec
Hooks
After features/support/hooks.rb:1 5452 millisec
Background
Given | try to search using Wikipedia App 1483 millisec
Steps
When | type in "BrowserStack" 7621 millisec
Then | should see results 311 millisec
13 sec
Hooks
After features/support/hooks.rb:1 4526 millisec
Background
Given | try to search using Wikipedia App 916 millisec
Steps
When | type in "BrowserStack" 7674 millisec

@ Learn more

Please see Testing in BDD with Gherkin based frameworks (e.g. Cucumber) for an overview on how to use Cucumber Tests with Xray.

In BrowserStack you can see some info about it.

‘O BrowserStack App Automate Buyaplan Get help Invite my team Products Account
Free plan BuyaPlan | Build: cucumber browserstack ioEn
© 82 mins left
Invite my team

Build ID 49df749b11a69ac131 1e2
Username and Access Keys Show + Started 14:38 UTC 7 Jun 2018

Duration 29 mins 25 secs
Quick Start Guide >
Integrate your test suite > —

= v (C]
parallel threads All Sessions (25) Completed (9) Timeouts (16)
/ /
0/5 0/5 Session os Browser / Device Duration Finished
Running Queued
© parallel test 71 Google Pixel - 1mago

9 Build: cucumber browserstack @ parallel test 6.0 Google Nexus 6 - 1mago

aminago

References

https://docs.cucumber.io/tools/ruby/
https://www.browserstack.com/app-automate/appium-cucumber
Testing in BDD with Gherkin based frameworks (e.g. Cucumber)
Exporting Cucumber Tests - REST

Import Execution Results - REST

https://docs.cucumber.io/tools/ruby/
https://www.browserstack.com/app-automate/appium-cucumber
https://docs.getxray.app/pages/viewpage.action?pageId=81110657
https://docs.getxray.app/display/XRAY600/Exporting+Cucumber+Tests+-+REST
https://docs.getxray.app/display/XRAY600/Import+Execution+Results+-+REST
https://docs.getxray.app/pages/viewpage.action?pageId=81110657

	Testing mobile apps in the cloud (BrowserStack) using Appium and Cucumber in Ruby

