
Testing the UI of iOS apps using XCTest and XCUITest in
Swift
Overview
In this tutorial, we will "create" some UI-based tests for an iOS application using testing framework along with XCUITest.XCTest

Requirements
Xcode
Xcode command line tools

xcode-select --install
xcpretty
(optional) and fastlane trainer plugin

Description
For this tutorial, we'll use a by , with minor updates as tracked in . sample iOS app with UI tests Shashikant this fork

The iOS application is quite simple: it has just a button and a text that appears whenever clicking on it.

The application has one View Controller class.

https://developer.apple.com/documentation/xctest
https://github.com/xcpretty/xcpretty
https://docs.fastlane.tools/
https://github.com/fastlane-community/trainer
https://github.com/Shashikant86/XCUITest101
http://shashikantjagtap.net
https://github.com/bitcoder/XCUITest101

XCUITest101/ViewController.swift

//
// ViewController.swift
// XCUITest101
//
// Created by Shashikant Jagtap on 24/09/2018.
// Copyright © 2018 Shashikant Jagtap. All rights reserved.
//

import UIKit

class ViewController: UIViewController {

 @IBOutlet weak var welcomeText: UILabel!
 @IBAction func enterPressed(_ sender: Any) {

 welcomeText.text = "Welcome to XCUITest"
 welcomeText.isHidden = false

 }
 override func viewDidLoad() {
 super.viewDidLoad()
 welcomeText.isHidden = true
 // Do any additional setup after loading the view, typically from a nib.
 }

}

The project contains two implemented in Swift: one named "testRecorded" (which is not an actual test case) and another, the real one, named tests
"testRefactored".

Tests use and XCUITest to load the application and execute the UI-baed tests.XCTest framework

https://github.com/bitcoder/XCUITest101/blob/master/XCUITest101UITests/XCUITest101UITests.swift
https://developer.apple.com/documentation/xctest

XCUITest101UITests/XCUITest101UITests.swift

//
// XCUITest101UITests.swift
// XCUITest101UITests
//
// Created by Shashikant Jagtap on 24/09/2018.
// Copyright © 2018 Shashikant Jagtap. All rights reserved.
//

import XCTest

class XCUITest101UITests: XCTestCase {

 override func setUp() {
 super.setUp()
 continueAfterFailure = false
 XCUIApplication().launch()
 }

 override func tearDown() {
 super.tearDown()
 }

 func testRecorded() {
 // this is not an actual test...
 let app = XCUIApplication()
 app.otherElements.containing(.image, identifier:"wall1").element.tap()
 app.buttons["enter"].tap()
 app.staticTexts["Welcome to XCUITest"].tap()
 }

 func testRefactored() {
 let app = XCUIApplication()
 app.buttons["enter"].tap()
 XCTAssert(app.staticTexts["Welcome to XCUITest"].exists)
 }

}

In order to run the tests from the command line or during CI, you can use . By processing its output using , a JUnit XML can be xcodebuild xcpretty
generated (, by default).build/reports/junit.xml

xcodebuild -project XCUITest101.xcodeproj/ -scheme XCUITest101 -destination 'platform=iOS Simulator,OS=13.1,
name=iPhone 11 Pro Max' clean build test CODE_SIGN_IDENTITY="" CODE_SIGNING_REQUIRED=NO | xcpretty -r junit

After running the tests and generating the JUnit XML report (e.g.,), it can be imported to Xray (either by the REST API or by using one of the CI junit.xml
plugins or through action within the Test Execution).Import Execution Results

curl -H "Content-Type: multipart/form-data" -u admin:admin -F "file=@build/reports/junit.xml" http://jiraserver.
example.com/rest/raven/1.0/import/execution/junit?projectKey=CALC

A Test Execution will be created containing information about the executed scenarios.

If you're using Xcode, then you (either all of them or just a specific one).can also use it to write and run your tests

However, by default, this won't produce a JUnit XML report by itself which can, later on, be uploaded to Xray.

https://docs.getxray.app/download/attachments/81111758/junit.xml?version=1&modificationDate=1631010625222&api=v2
https://developer.android.com/studio/test

Each test is mapped to a Generic Test in Jira, and the field contains the name of the class concatenated with the method name of Generic Test Definition
the corresponding automated test.

The Execution Details of the Generic Test contains information about the "Test Suite" (as per JUnit format), which in this case corresponds to the fully-
qualified name of the class holding the test.

Notes

You should be able to use (docs) to build and run your tests by using the .fastlane here trainer plugin

In that case, you need to define a to run the tests and invoke the plugin.lane trainer

fastlane/Fastfile

default_platform(:ios)

platform :ios do
 desc "Run tests"
 lane :test do
 scan(scheme: "XCUITest101",
 output_types: "",
 fail_build: false)

 trainer(output_directory: "build/reports/")
 end

end

Notes

xcpretty project seems to be not very active
xcpretty has a that inhibits the processing of multiline error descriptions (only the header is imported as the log/output of the known limitation
assertion)

References
https://developer.apple.com/documentation/xctest
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
https://github.com/xcpretty/xcpretty
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/08-automation.html#
//apple_ref/doc/uid/TP40014132-CH7-SW3
https://www.slideshare.net/ShankarAnamalla/ios-app-testing-with-xctest-and-xcuitest
https://github.com/zanizrules/fastlane-plugin-xcresult_to_junit

https://fastlane.tools/
https://docs.fastlane.tools/
https://github.com/fastlane-community/trainer
https://github.com/xcpretty/xcpretty
https://github.com/xcpretty/xcpretty/issues/347
https://developer.apple.com/documentation/xctest
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
https://github.com/xcpretty/xcpretty
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/08-automation.html#//apple_ref/doc/uid/TP40014132-CH7-SW3
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/08-automation.html#//apple_ref/doc/uid/TP40014132-CH7-SW3
https://www.slideshare.net/ShankarAnamalla/ios-app-testing-with-xctest-and-xcuitest
https://github.com/zanizrules/fastlane-plugin-xcresult_to_junit

	Testing the UI of iOS apps using XCTest and XCUITest in Swift

