Model-Based Testing using GraphWalker and Java

® Overview
© Mapping concepts to Xray
" Tests
® Requirements
® Results
® Example
® Tips

® References

Overview

GraphWalker is a tool that addresses State Transition Model-Based Testing; in other words, it allows you to perform modeling around states and
transitions between those states using directed graphs.

v_CIientNotRunning]

< NG (3
& X e
S o o %, &,
SN o/ & %, ¢
7
AN & %,
@ Q}‘\ e/ 2

RS

N
P&
I e_ValidPremiumCredentials
™ v_LoginPrompted v_Browse
24 e_Logout

Here is some clarification around some key concepts using the information provided by GraphWalker's documentation that explains them clearly:

® edge: An edge represents an action, a transition. An action could be an API call, a button click, a timeout, etc. Anything that moves your System
Under Test into a new state that you want to verify. But remember, there is no verification going on in the edge. That happens only in the vertex.

® vertex: A vertex represents verification, an assertion. A verification is where you would have assertions in your code. It is here that you verify that
an API call returns the correct values, that a button click actually did close a dialog, or that when the timeout should have occurred, the System
Under Test triggered the expected event.

* model: A model is a graph, which is a set of vertices and edges.

From a model, GraphWalker will generate a path through it. A model has a start element, and a generator which rules how the path is generated, and
associated stop condition which tells GraphWalker when to stop generating the path.

Generators and stop conditions are essential in GraphWalker (more info here and here), as they influence how the model will be "walked" and until when.
Multiple models can interact with one another (i.e. jump from one to other and vice-versa), using shared states (i.e. vertices that have a "shared name").

Each model has an internal state with some variables - its context. Besides, and since GraphWalker can transverse multiple models, there is also a global
context.

We can also add actions and guards to the model, which can affect how the model is walked and how it behaves:

® action: a way of setting variables in the model or global context; actions are implemented using JavaScript
® guard: a way of blocking/guard edges from being walked/executed, usually considering variables stored in the model or global context; guards
are implemented using JavaScript.

https://graphwalker.github.io/
https://github.com/GraphWalker/graphwalker-project/wiki/Test-path-generation
https://github.com/GraphWalker/graphwalker-project/wiki/Generators-and-stop-conditions

In sum, we model (i.e. build a model) a certain aspect related to our system using directed graphs; the model represents a test idea that describes
expected behaviors. Checks are implemented in the vertices (i.e. states) and actions are performed in the edges. GraphWalker will then "walk" the model (i.
e. perform a set of "steps"/edges) using a generated path. While doing so, it looks at JavaScript guards to check if edges can be "walked" and performs
JavaScript based actions to set internal context variables . It stops "walking" if stop condition(s) are met.

To build the model, we can use a visual tool and (GraphWalker Studio) and export it to a JSON file.

Mapping concepts to Xray

Tests

Besides other entities, in Xray we have Test issues and "requirements” (i.e. issues that can be covered with Tests).

In GraphWalker, the testing is performed continuously by walking a path (as a result of its generator) and until certain condition(s) is(are) met.

This is a bit different from traditional, sequential test scripts where each one has a set of well-defined actions and expected results.

We can say that GraphWalker produces dynamic test cases, where each one corresponds to the full path that was generated. Since the number of
possible paths can be quite high, we can follow a more straightforward approach: consider each model a Test, no matter exactly what path is executed.

Remember that a model in itself is a high-level test idea, something that you want to validate; therefore, this seems a good fit as long as we have the
means to later on debug it.

Requirements
What about "requirements"?
Well, even though GraphWalker allows you to assign one or more requirement identifiers to each vertex, it may not be the most suitable approach linking

our model (or parts of it) to requirements. Therefore, and since we consider the model as a Test, we can eventually link each model to a "requirement"
later on in Jira.

Results

In sequential scripted automated tests/checks, we look at the expectation(s) using assert(s) statement(s), after we perform a set of well-known and
predefined actions. Therefore, we can clearly say that the test scenario exercised by that test either passed or failed.

In MBT, especially in the case of State Transition Model-Based Testing, we start from a given vertex but then the path, that describes the sequence of
edges and vertices visited, can be quite different each time the tool generates it. Besides, the stop condition is not composed by one or more well-known
and fixed expectations; it's based on some more graph/model related criteria.

When we "execute the model”, it will walk the path (i.e. go over from vertex to vertex through a given edge) and performing checks in the vertices. If those

checks are successful until the stop condition(s) is achieved, we can say that it was successful; otherwise, the model is not a good representation of the
system as it is we can say that it "failed.”

Example

In this tutorial, we'll use an example provided by the GraphWalker community (please check GraphWalker wiki page describing it) which targets the well-
known PetClinic sample site.

https://github.com/GraphWalker/graphwalker-project/wiki/GraphWalker-Studio
https://github.com/GraphWalker/graphwalker-project/wiki/PetClinic
https://github.com/spring-projects/spring-petclinic/

Pet CliniC A Spring Framework Demonstration

A Home Q Find owners i= Veterinarians A Error

Welcome

&) spring ..

Requirements

® Java 8
® PetClinic sample application (requires Java 8 as it is)
© git clone https://github.con SpringSource/spring-petclinic.git
cd spring-petclinic
git reset --hard 482eeb1c217789b5d772f 5c15c3ab7aa89caf 279
n/n tontat 7: run

® GraphWalker
® GraphWalker Studio

How can we test the PetClinic website using MBT technique?

Well, one approach could be to model the interactions between different pages. Ultimately they represent certain features that the site provides and that
are connected with one another.

In this example, we'll be using these:

® PetClinic: main model of the PetClinic store, that relates several models provided by different sections in the site
® FindOwners: model around the feature of finding owners

® Veterinarians: model around the feature of listing veterinarians

® OwnerInformation: model around the ability of showing information/details of a owner

* NewOwner: model around the feature of creating a new owner

(D Please note

Remember that you could model it completely differently; modeling represents a perspective.

Models can be built using GraphWalker Studio. We can use it to load previously saved model(s) like the ones in PetClinic.json. In this case, the JSON file
contains several models; we could also have one JSON file per model.

The following picture shows the overall PetClinic model, that interacts with other models.

https://github.com/GraphWalker/graphwalker-project/wiki/GraphWalker-Studio
https://github.com/GraphWalker/graphwalker-example/blob/master/java-petclinic/src/main/resources/com/company/PetClinic.json

C ® 127.0.0.1:9090

Close menu GraphWalker Studio

New test FindOwners * NewOwner * OwnerInformation "" Veterinarians *

Load test

Save test

Run test

e-FindOwners v_FindOwners
inari inarians
D v_Veterinarians e-Veterina
U
0 q} oq))
Add Model Q § (10
~% g &
Dol e o/)) > (‘2)
o layout ~ ep @
ef@ o S, \Q ()
Model name: /7/) 9@ 0\ L \z\
PetClinic e/'/'e,) &9 o/ YU
Model generator builder: $ @*o
generator builder \(bg\
Model generator: Py V_Homepage

random(edge_coverage(100))
Model actions:

model action(s)

GraphWalker Studio allow us to run the model in offline, i.e. without executing the underlying test automation code, so we can validate it.

Let's pick the NewOwner model as an example, which is quite simple.
"v_NewOwner" represents, accordingly to what we've defined for our model, being on the "New Owner" page.
If we fill correct data (i.e. using the edge "e_CorrectData"), we'll be redirected to a page showing the owner information.

Otherwise, if we fill incorrect data (i.e. using the edge "e_IncorrectData") an error will be shown and the user keeps on the "New Owner" page.

v_IncorrectData

v_Ownerinformation &
&

Q9
&

&

= Cofr 06
0, &
Uq o/

v_NewOwner

@ Please note

Usually, to implement the automation code we would create a Maven project from scratch, copy the model file(s), and generate a skeleton of
the sources for our model.

To do so, we would perform something such as:

generate a Maven project prepared for GraphWalker
mvn archetype:generate -B -DarchetypeGroupld=org.graphwalker -DarchetypeAtrtifactid=graphwalker-maven-archetype -Dgroupld=com.
company -Dartifactld=myProject

store the JSON of the model(s) in src/main/resources/

generate a skeleton of an implementable interface
mvn graphwalker:generate-sources

The Java class that implements the edges and vertices of this model is defined in the class NewOwnerTest. Actions performed in the edges are quite
simple. Assertions are also simple as they're only focused on the state/vertex they are at.

class implementing the model "NewOwner"

https://github.com/GraphWalker/graphwalker-example/blob/master/java-petclinic/src/main/java/com/company/modelimplementations/NewOwnerTest.java

package com conpany. nodel i npl ement ati ons;

i nport com conpany. NewOaner ;

i mport com github.javafaker. Faker;

i nport org. graphwal ker. core. nachi ne. Execut i onCont ext ;
i mport org.graphwal ker. j ava. annot ati on. G- aphWal ker ;

i mport org.openga. sel eni um By;

import static com codeborne. sel eni de. Condi tion. text;
inport static com codeborne. sel eni de. Condi ti on. vi si bl e;
inport static com codeborne. sel eni de. Sel eni de. $;

inport static com codeborne. sel eni de. Sel eni de. $x;

/*-k

* I npl ements the nodel (and interface) NewOaner SharedState

* The default path generator is Random Pat h.

* Stop condition is 100% coverage of all edges.

*/

@& aphval ker (val ue = "randon(edge_coverage(100))")

public class NewOaner Test extends Executi onContext inplenents NewOaner {

@verride
public void v_Ownerlnformation() {

$(By. tagNanme("h2")). shoul dHave(text ("Oaner Information"));

$x("/htm /body/div/table[last()]/tbody/tr/td[2]/ing").shoul dBe(visible);
}

@verride

public void e_CorrectData() {
fill OmnerData();
$(By.id("tel ephone")).sendKeys(String.val ueX (new Faker (). nunber().digits(10)));
$("button[type=\"submi t\"]").click();

}

@verride

public void e_lncorrectData() {
fill OmerData();
$(By.id("tel ephone")).sendKeys(String.val ued (new Faker (). nunber().digits(20)));
$("button[type=\"submi t\"]").click();

}

@verride
public void v_lncorrectData() {
$(By. cssSel ector("div.control -group.error > div.controls > span. hel p-inline"))
. shoul dHave(text ("numeric val ue out of bounds (<10 digits>. <0 digits> expected)"));

}

@verride
public void v_NewOaner () {
$(By. tagNanme("h2")). shoul dHave(text (" New Oaner"));
$x("/htm /body/tabl e/tbody/tr/td[2]/ing").shoul dBe(visible);

}

private void fill OwmerData() {
$(By.id("firstName")).clear();
$(By.id("firstName")).sendKeys(new Faker().name().firstName());

$(By.id("lastNane")).clear();
$(By.id("last Nane")).sendKeys(new Faker().name().|astNane());

$(By.id("address")).clear();
$(By.id("address")).sendKeys(new Faker().address().full Address());

$(By.id("city")).clear();
$(By.id("city")).sendKeys(new Faker().address().city());

$(By.id("tel ephone”)).clear();

In the previous example, we can see that the class NewOwnerTest extends ExecutionContext; this ties the model with the path generator and provides a
context for tracking the internal state and history of the model.

The @GraphWalker annotation is used to specify the path generator and stop conditions. This is used for online path generation during test execution.
If follows this syntax:

@GraphWalker(value = "generator(stop_conditions)", start = "start_element”, groups = { "group" })
such as:

@GraphWalker(value = "random(reached_vertex(v_ShoppingCart))", start = "e_StartBrowser", groups = { "default" })

@ Please note

Tests using the model can also be created and executed programmatically similar to other tests, using JUnit or other testing framework. More
info here and here.

The flow would be something like:

. create a TestBuilder object

. create a Context object

. add the Context to the TestBuilder

. execute it, using .execute()

. optionally, look at the Result object returned to see if it has errors, using .hasErrors()

b wWNE

example of some Tests implementing using JUnit

public class SinpleTest extends ExecutionContext inplenments Login {
public final static Path MODEL_PATH = Paths. get ("org/ nmyorg/testautomation/Login.json");

@est
public void runSnokeTest () {
new Test Bui | der ()
. addCont ext (new Si npl eTest (). set Next El enment (new Edge().setNane("e_Init").build()),

MODEL _PATH,
new ASt ar Pat h(new ReachedVertex("v_Browse")))
.execute();
}
@est

public void runFunctional Test1() {
new Test Bui | der ()
. addCont ext (new Si npl eTest (). set Next El enment (new Edge().setNane("e_Init").build()),

MODEL_ PATH,
new RandonPat h(new EdgeCover age(100)))
.execute();
}
@est

public void runFunctional Test2() {
Test Bui | der builder = new TestBuil der()
. addCont ext (new Si npl eTest (). set Next El enent (new Edge().set Nane("e_Init").build()),
MODEL_PATH,
new RandonPat h(new EdgeCover age(100)));
Result result = builder.execute(true);
Assert. assertFal se(result.hasErrors());

}

@est
public void runStabilityTest() {
new Test Bui | der ()
. addCont ext (new Si npl eTest (). set Next El ement (new Edge().setNane("e_Init").build()),
MODEL_PATH,
new RandonPat h(new Ti neDur ati on(30, Ti neUnit. SECONDS)))
.execute();

In this case, we could execute the tests using Maven. We would then use the JUnit XML report produced by JUnit itself.

mvn test

https://github.com/GraphWalker/graphwalker-project/wiki/Test-execution
https://gw4e.github.io/mydoc_nutshell.html

To run the tests online with GraphWalker we can use Maven, since there is a specific plugin for assisting with this. This will produce a single JUnit XML
report stored in the t ar get / gr aphwal ker - report s/ directory.

example of a Bash script to run the tests

rm-f target/graphwal ker-reports/*. xmn
mvn graphwal ker: t est

After successfully running the tests and generating the JUnit XML report, it can be imported to Xray (either by the REST API or through the Import
Execution Results action within the Test Execution, or even by using a CI tool of your choice).

example of a Bash script to import the results

REPORT_FI LE=$(| s target/graphwal ker-reports/ TEST- G aphVal ker-*.xm | sort | tail -n 1)
curl -H "Content-Type: nultipart/formdata” -u admin:admin -F "fil e=@REPORT_FI LE" http://jiraserver.exanple
/rest/raven/ 1.0/ i nport/execution/junit?project Key=CALC

Calculator / CALC-8049

Execution results - TEST-GraphWalker-20201202T164130775.xml - [1606927747887]

#Edit QComment Assign More v StartProgress Resolvelssue Close lssue Admin v
v Details
Type: [Test Execution Status: XD (View Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None

Test Environments: None

Test Plan None

~ Description
Execution results imported from external source

v Tests

Overall Execution Status

PASS

Total Tests: 5

= Filter(s)

B~ Apply Rank Show entries Columns +
Rank Key 4 summary Test Type #Req #Def Assignee Status

a] 4 CALC-8053 FindOwnersTest Generic 0 0 Administrator >

] 3 CALC-8052 NewOwnerTest Generic 0 0 Administrator »

a] 5 CALC-8054 OwnerlnformationTest Generic 0 0 Administrator >

a] 1 CALC-8050 PetClinicTest Generic 0 0 Administrator >

a] 2 CALC-8051 VeterinariansTest Generic 0 0 Administrator >
Showing 1o 5 of 5 entries First Previous [Next Last

Each model is mapped to JUnit's testcase element which in turn is mapped to a Generic Test in Jira, and the Generic Test Definition field contains the
name of the package and the class that implements the model related methods for edges and vertices. The summary of each Test issue is filled out with
the name of the class.

The Execution Details page also shows information about the Test Suite, which will be just "GraphWalker."

https://docs.getxray.app/display/XRAY600/Import+Execution+Results+-+REST
https://docs.getxray.app/display/XRAY600/Integrations

Calculator / Test Execution: CALC-8049 | Test: CALC-8052

q Export Test as Text A Return to Test Execution Execute with Exploratory App 4 Previous Next »
NewOwnerTest
Execution Status PASS Assignee: Administrator Versions: -
Executed By: Administrator Revision: -
Started On: 02/Dec/20 4:49 PM (3 Finished On: 02/Dec/20 4:49 PM Tests -
environments:
Affected Requirements ~
None
Comment Preview Comment v Execution Defects (0) Create Defect Create Sub-Task Add Defects v Execution Evidence (0) Add Evidence v

e Execution Details
Test Description ~
None
Custom Fields -~
There are no Test Run Custom Fields defined.

Test Details -~

Test Type: Generic
Definition: 1 NewOwnerTest.NewOwnerTest |
Results ~
Context output Duration Status
TestSuite GraphWalker - 31sec

Tips

® Use MBT not to replace existing test scripts but in cases where you need to provide greater coverage
® Discuss the model(s) with the team and the ones that can be most useful for your use case
® You can control the seed of the random generator used by GraphWalker, so you can easily reproduce bugs (i.e. by reproducing the generated
path)
® You can use GraphWalker Player to see the graph being walked in real-time. You can use a sample HTML file that contains the code to connect
to a WebSocket server that you need to instantiate in the runner side (example) .
© Example:
= open the file index.html in your browser, using an URL such as "file:///Users/you/index.html?wsURI=localhost:88877?
wsURI=localhost:8887"
= execute GraphWalker, using the custom runner
® nvn exec:java -Dexec. mai nCl ass="com conpany. runners. WebSocket Appl i cati on"

'Model: Ownerlnformation, Element: v_NewPet (dcb0cbb6-468c-11¢7-a919-92cbcb67fe33)
Steps: 33, Fulfilment: 22%, Data: {"numOfPets":"0" 'C f "y

Connected to: ws://localhost:8887

PP— o Vetarnarias.

- — T— - — .
"~ o £
e I /S
s @
a
e . v P o) - S re———

o]
® Multiple runs of your tests can be grouped and consolidate in a Test Plan, so you can have an updated overview of their current state
® After importing the results, you can link the corresponding Test issues with an existing requirement or user story and thus track coverage directly
on the respective issue, or even on an Agile board
= Calculator / CALC-8055
As a user, | can access the PetClinic site

Edit QComment Assign More v StartProgress Closelssue Admin v
v Details
Type: B story Status:] (View Workflow)
Priority: 2 Major Resolution Unresolved
Affects Version/s None Fix Version/s: None
Component/s None
Labels None

~ Description
As a user, | can access the PetClinic site to perform a set of operations.

~ Test Coverage

ETE—

o No Tests were found testing the requirement.

https://github.com/GraphWalker/graphwalker-player
https://github.com/GraphWalker/graphwalker-player/blob/master/index.html
https://github.com/GraphWalker/graphwalker-example/blob/master/java-petclinic/src/main/java/com/company/runners/WebSocketApplication.java
https://github.com/GraphWalker/graphwalker-example/blob/master/java-petclinic/src/main/java/com/company/runners/WebSocketApplication.java

Calculator / CALC-8055
As a user, | can access the PetClinic site

Edit ‘Q Comment Assign More v Start Progress Resolve Issue
v Details

Type: B story

Priority: 2 Major

Affects Version/s: None

Component/s: None

Labels: None

Requirement Status:

~ Description

As a user, | can access the PetClinic site to perform a set of operations.

~ Test Coverage

TEST COVERAGE FOR THE FOLLOWING ANALYSIS SCOPE

Scope: Version; Version: None - latest execution; Environment: All Environments ~

ilter(s)
E\’ v
P Status

o 2 OPEN
o 2 OPEN
o OPEN
o 2 OPEN
o 2 OPEN

o Showing 1to 5 of 5 entries
Calculator

m

Calculator Board Enhance... v
Backlog

Active sprints.

Releases

Reports

Issues

Components

Structure.

Xray Reports

L@ HERPFPBEDE

Xray Test Repository

Xray Test Plan Board

<&

i) Automated Steps Library

1=y

References

GraphWalker

Resolution A Key
Unresolved CALC-8050
Unresolved CALC-8051
Unresolved CALC-8052
Unresolved CALC-8053
Unresolved CALC-8054

All sprints switch sprint ~

QUICK FILTERS: Only My Issues Recently Updated

1000

caLc-962
As a user, | can calculate add positive numbers
CALC-983 As a user, I can calculate the sum of 2 numbers
cALc-3206
Sub Test Execution for CALC-983

cALc-670
calculator screen does not show anything

GraphWalker documentation pages
GraphWalker model+code for testing the PetClinic site
Actions and Guards (from AltkWalker's documentation)

GraphWalker CLI
GraphWalker Player

GraphWalker plugin for Eclipse (GWA4E)
GraphWalker and GWA4E in a nutshell

Article on MBT

Close Issue

Admin v
Status: CIED (view Workflow)
Resolution: Unresolved
Fix Version/s: None
Summary Test Runs

PetClinicTest

VeterinariansTest

NewOwnerTest

FindOwnersTest

OwnerinformationTest

IN PROGRESS

entries Columns v
Test Status

First Previous [l Next Last

cALC-8085
s a user, | can access the PetClinic site

cALc-8048

As a user, | can obtain location data for a given country's zipcode

cALc-3208
s a user, | can calculate the sum of two numbers

a
»

https://graphwalker.github.io/
https://github.com/GraphWalker/graphwalker-project/wiki
https://github.com/GraphWalker/graphwalker-project/wiki/PetClinic
https://altom.gitlab.io/altwalker/altwalker/how-tos/actions-and-guards.html
https://github.com/GraphWalker/graphwalker-project/wiki/Command-Line-Tool
https://github.com/GraphWalker/graphwalker-player
https://gw4e.github.io/index.html
https://gw4e.github.io/mydoc_nutshell.html
https://pragmatic-qa.com/state-transition-testing-with-graphwalker/

	Model-Based Testing using GraphWalker and Java

