Testing APIs using Karate DSL

Owdnaieywou'll learn
Prerequisites
* |ntegrathgDefin&tagts using Karate DSL
o ®ARLN the test and push the test report to Xray
* ValiomtedimQinatitwidhe test results are available
= JUnit XML results
° Jira Ul
® Tips
® References
Source-code for this tutorial

® code is available in GitHub

Overview

Karate is an open-source tool to combine API test-automation, mocks, performance and Ul automation in
one framework. The BDD syntax popularized by Cucumber is language-neutral, and accessible for non-
programmers. Assertions and HTML reports are built-in, and you can run tests in parallel.

Prerequisites

For this example we will useKarate DSL, that has available a Maven archetype that will build the skeleton
of the project.

The Karate Maven archetype will create the pom xm , recommended directory structure, sample test
and JUnit 5 runner.

We will need:

® Access to a demo site that we aim to test
® Maven environment with JUnit 5

To start using Karate DSL please follow the Get Started documentation.

The test consists in validating the listing operation of the API from the demo site and a second one to
create and fetch the created user to validate the success.

By default we see 5 files being created, one that will hold the logging configurations, called logback-test.
xml

https://github.com/microsoft/playwright-test/blob/master/README.md
https://github.com/karatelabs/karate#junit-5
http://dummy.restapiexample.com/
https://github.com/karatelabs/karate#junit-5
https://github.com/karatelabs/karate#maven
http://dummy.restapiexample.com/
https://github.com/Xray-App/tutorial-java-karate

logback-test.xml

<?xm version="1.0" encodi ng="UTF-8"?>
<configuration>

<appender nane="STDOUT" cl ass="ch. qos. | ogback. core. Consol eAppender ">
<encoder >
<pat t er n>%@d{ HH: nm ss. SSS} [% hread] % 5l evel % ogger{36} - %
msg¥m</ pattern>
</ encoder >
</ appender >

<appender nanme="FILE" cl ass="ch. qos. | ogback. core. Fi | eAppender ">
<file>target/karate.log</file>
<encoder >
<pat t er n>%d{ HH: nm ss. SSS} [% hread] % 5l evel % ogger{36} - %
msg¥m</ pattern>
</ encoder >
</ appender >

<l ogger name="comintuit" |evel ="DEBUG'/>

<root level ="info">
<appender -ref ref="STDOUT" />
<appender-ref ref="FILE" />
</ r oot >

</ configuration>

A second file that will have the Karate configurations (karate-config.js) regarding the environments, it will
allow the definitions of variables per environment or to define actions to be executed in different
environments:

karate-config.js

function fn() {
var env = karate.env; // get system property 'karate.env'
karate.l og(' karate.env system property was:', env);
if (lenv) {
env = 'dev';
}
var config = {
env: env,
nyVar Narme: ' soneVal ue'
}
if (env == "dev') {
/1 custon ze
/1 e.g. config.foo = '"bar';
} else if (env == "e2e') {
/1 custon ze

}

return config;

For this example we will not change the above files. We still have 3 other files that were created, one
called ExamplesTest.java that is a special Java class that will allow the execution in parallel of the tests
defined in Karate (you can find more information here). In this class we have added a method .
outputJunitXml(true) in the runner to enable the Junit report to be generated in the output.

The final version of the class is below.

https://github.com/karatelabs/karate#junit-5-parallel-execution

ExamplesTest.java

package exanpl es;

inport comintuit.karate. Results;

import comintuit.karate. Runner;

inmport static org.junit.jupiter.api.Assertions.*;
inmport org.junit.jupiter.api.Test;

cl ass Exanpl esTest {

@est
void testParallel () {
Results results = Runner. path("cl asspat h: exanpl es")
.out put Juni t Xm (true)
.parallel (2);
assert Equal s(0, results.getFail Count(), results.
get Error Messages()) ;

Karate supports JUnit 5 and the advantage is that you can have multiple methods in a test-class. Notice
that in the below class we use the @Karate.Test tag that will identify this method as a test.

In here we are defining what is the test case we want to execute, in this case we are saying that we want
to execute the "DummyUsers" feature.

DummyUsersRunner.java

package exanpl es. users;
inport comintuit.karate.junit5. Karate;
cl ass DummyUser sRunner {

@Xar at e. Test
Karate testDummyUsers() {
return Karate.run("DummyUsers").rel ati veTo(getd ass());

}

The final file is the feature file where the tests are defined, although it as similarities with Cucumber, you
will see that there is a staggering difference, in this case there is no code behind that you need to define,
the notation defined here will be handled directly by Karate. Notice that Json is supported by default and
there are some keywords that will trigger actions, check the Karate documentation for more information.

For our example we have defined two scenarios, one to get all dummy users and then fetch the first user
by id and another that will create a user and fetch it to validate its creation.

dummyusers.feature

Feature: sanple karate test script

Backgr ound:
* url "http://dummy.restapi exanpl e. comf api/v1l/'

Scenario: get all dummy users and then get the first user by id
G ven path 'enpl oyees'
When net hod get
Then status 200

* def first = response. data[0]
G ven path 'enployee', first.id
When net hod get

Then status 200

Scenario: create a dummy user and then get it by id

* def user =
{
"name": "Karate Test User",
"sal ary": "3000",
"age": "35",
}

G ven path 'create'
And request user
When net hod post
Then status 200

* def id = response.data.id
* print 'created idis: ', id

G ven path 'enployee',id

When net hod get

Then status 200

And match response contains {status:success}

Let us go over some specificities of the above code to make it more clear.

First notice that we are using Gherkin language with extra definitions, we have a Feature with two Scenari
os, one Background common to both Scenarios, where we have defined the default url to be used.

In the scenarios we are using Gherkin language (using the Given-When-Then keywords) and, as Gherkin
supports catch-all symbol *', each time you want to use a script inline prefix it with *'.

In the first scenario we are performing a GET from the default url (defined in the background) plus what is
defined in the path and validating that we receive a HTTP 200. Then we extract from the response the
first entry of the data element and save it in a variable first.

Still in the same test we are performing the last HTTP GET, now to the url plus 'employee’ adding the
value of the variable first in the query string and validating that we get an HTTP 200.

The second scenario is a little more complicated as we are performing a POST request with a user object

in the BODY and then extracting the user id to perform a GET with it and check if the user was created
with success.

Once the code is implemented it can be executed with the following command, that will execute all tests
present:

m/n test

https://www.relishapp.com/cucumber/cucumber/docs/gherkin/using-star-notation-instead-of-given-when-then

If you need to filter the execution in the command line you can use some filters, as you can see we are
defining that we will look into Karate tags and skip the tests with the @skipme tag. We are also defining
that we will use the ExamplesTest runner (Junit5 parallel executor) but only for tests in the dummyusers.
feature as we can see below:

m/n test "-Dkarate.options=--tags ~@ki pme cl asspat h: exanpl es/ DunmyUser s
/ dummyusers. feature" -Dtest=Exanpl esTest

The results are immediately available in the terminal

-ExamplesTest

Karate also generates an HTML report that have detailed information on the tests results as we can
below:

In this example the correspondent Junit report is as below:

Junit Report

<testsuite failures="0" name="exanpl es/ DumryUser s/ dunmyusers. f eat ure"
ski pped="0" tests="2" tinme="4.30768"><testcase cl assnane="exanpl es.
DumryUser s. dummyuser s” nane="[1: 6] get all dummy users and then get the
first user by id" tinme="3.102637"><systemout>* url 'http://dumy
restapi example.comapi /vl/"' L passed

G ven path 'enpl oyees

.. passed

When net hod get
... passed
Then status 200
... passed
* def first = response. data[O0]
.. passed

G ven path 'enployee', first.id
... passed

When net hod get
... passed
Then status 200
... passed

</ syst em out ></ t est case>

<t est case cl assname="exanpl es. DummyUser s. durmyusers" nanme="[2:17] create a
dummy user and then get it by id" tinme="1.205043"><system out>* ur
"http://dumy. restapi exanple.comapi /v1l/"'

passed

* def user =
.. passed
G ven url "http://dunmy.restapi exanpl e. conf api/vl/create
................. passed

And request user
.. passed
When net hod post
.. passed
Then status 200
... passed

* def id = response.data.id
... passed

* print 'created idis: ', id
... passed

Gven path id
... passed

</ syst em out ></ t est case>
</testsuite>

If you have more than one feature file there will be one Junit report per feature file.

@ A new version of Karate is about to be released where the testcase name will not have the
order of the scenario and line.

A release candidate with the change is already available for you to experiment: https://search
maven.org/artifact/com.intuit.karate/karate-core/1.2.0.RC4/jar.

With the next official release the next step will not be needed and can be skipped.

Notice that the Junit report generated with Karate joins, in the name of the testcase, the order of the
scenario and line: "[1:6]" concatenated with the testcase name. In Xray we are using the testcase
path+name to uniquely identify the test each time the result is uploaded, in this case if the line changes
(due to some edition of the file thus changing the line of the code) Xray will create a new test (with this
new name) instead of uploading the results to the previously created one.

We advise you to use the tool available in https://github.com/bitcoder/junit-processor to remove the
characters from the testcase name, this tool have a patch exactly to remove that from the Junit report
generated. To use it you just have to tun the following command:

https://github.com/bitcoder/junit-processor
https://search.maven.org/artifact/com.intuit.karate/karate-core/1.2.0.RC4/jar
https://search.maven.org/artifact/com.intuit.karate/karate-core/1.2.0.RC4/jar

junit-processor -p 1 exanples. DummyUsers. dunmyusers. xm

This will produce a new file called "junit-new.xml" that you can use to upload to Xray.

Integrating with Xray

As we saw in the above example, where we are producing a Junit report with the result of the tests, we
need to import those results to your Jira instance, this can be done by simply submitting automation
results to Xray through the REST API, by using one of the available CI/CD plugins (e.g. for Jenkins) or
using the Jira interface to do so.

API

API
Once you have the report file available you can upload it to Xray through a request to the REST API

endpoint for JUnit, and for that the first step is to follow the instructions in v1 or v2 (depending on your
usage) to obtain the token we will be using in the subsequent requests.

Authentication

The request made will look like:

curl -H "Content-Type: application/json" -X POST --data '{ "client_id":
"API _KEY","client_secret": "API_SECRET" }' https://xray.cloud. getxray. app
[api/v2/authenticate

The response of this request will return the token to be used in the subsequent requests for
authentication purposes.

JUnit XML results

Once you have the token we will use it in the API request with the definition of some common fields on
the Test Execution, such as the target project, project version, etc.

curl -H "Content-Type: text/xm " -X POST -H "Authorization: Bearer
$token" --data @junit-new xm " https://xray.cloud. getxray.app/api/v2
/i mport/execution/junit?project Key=XT&t est Pl anKey=XT- 351

With this command we are creating a new Test Execution in the referred Test Plan with a generic
summary and two tests with a summary based on the test name.

https://docs.getxray.app/display/XRAYCLOUD/Import+Execution+Results+-+REST#ImportExecutionResultsREST-JUnitXMLresults
https://docs.getxray.app/display/XRAYCLOUD/Import+Execution+Results+-+REST#ImportExecutionResultsREST-JUnitXMLresults
https://docs.getxray.app/display/XRAYCLOUD/Authentication+-+REST
https://docs.getxray.app/display/XRAYCLOUD/Authentication+-+REST+v2

Projects | [Xray Tutorials / B XT-351
tutorial-java-karate
@ Attach

Create subtask

Description

Add a description.

Tests

naaress + [T

Overall Execution Status

Otinkissue | v

£ Tests e

View on board

All Environments, final status v

2oseen

TOTAL TESTS: 2

. Fites v 10 v Coumns v
Koy summary Assignee #Test Executions Dataset Latest Status Actions
) X736 getall dummy users and then get the first user by id 1 [assep
) XT-357 create adummy user and then get it by id 1 I passeD .-
1 Net Total 2 ssues

Jira Ul

Jira Ul

Create a Test Execution for the tests that you have

Projects / [Xray Tutorials | B XT-351

tutorial-java-karate

Test Execuion for Test Plan XT-351
Assignes
Gristiano Cunha v

Choose 3 user t0 assign the Test Execution

Fix Versionfs
Select. v
Test Environment
Select. v

@ oo Test Execution

@ Attach Createsubtask D Linkissue | v % Tests
Description
Adda descripton
Tests
O Test Excautions
it status.
a v Filters 0 v Columns v
Ky summary Assignes #TestExscuions Dataset _ Latest Status hetons
) X736 get al dummy users and then ge th fistuser by id ' [passeo
O XT-357 create a dummy user and then get it by id 1 [passeD B
1 Nex Total 2 ssues
i s " "
Fill in the necessary fields and press "Create
Create planned Test Execution
et
ooy Tutorins S
summry

Cancel

Open the Test Execution and import the JUnit report

« o s <@

T R PR - T . reaten

Overall Execution Status

Zrom R—

Choose the results file and press "Import"

Import Execution Results

No e chosen

The file mution results for the Test Execution.

The Test Execution is now updated with the test results imported
Projects | [Xray Tutorials | [XT-358

Test Execution for Test Plan XT-351
@ miach B Creaosubtask Oinkissue v [ests
Description

Add a description.

Tests

AddTests

Overall Execution Status

m v Fes v 0 v Coumns v
Ronk= Key Summary TestType - Dataset #Defects ~ Status Actions

[SRN] XT-356 gt all dummy users and then get the first user by id Generic 0 I passep 0

0 2 XT-357 createa dummy user and then get t by id Generic o 1) Passen Eul

Prov 1 Nex Total 2issues

Tests implemented will have a corresponding Test entity in Xray. Once results are uploaded, Test issues
corresponding to the tests are auto-provisioned, unless they already exist.

Projects / (Xray Tutorials | @ XT-356
get all dummy users and then get the first user by id
@ mtach BCrestesubtask P Linkissue v & Testdetalls e

Description

‘Add a description.

Tos detas
B Frocnsiions @ Testses B TostPars @ TestFuns

Test Repository

TestTpe
Generc <

hotwity

shows Al History Worklog Xray Hisory Newest st 17

Xray uses a concatenation of the suite name and the test name as the the unique identifier for the test.

In Xray, results are stored in a Test Execution, usually a new one. The Test Execution contains a Test
Run per each test that was executed using playwright-test runner.

Projects / [Xray Tutorials / [XT-355
Execution results [1642678401586]
@ mach Bjcrestesubtask Dlinkissve v [DTests o

Description

Add a description,

Tests

AddTosts
Overall Execution Status
. - Fien v 0 v Coumns v
Rk Koy Summary TestType - Dataset #Defects - Status Aetions
O 1 xT-356 getall dummy users and then get the first user by id Generic 0 | PasseD
O 2 xT357 creatsa dummy user and then get it by i Generic o W passen Eil
1 e Total 2issues

Detailed results, including logs and exceptions reported during execution of the test, can be seen on the
execution screen details of each Test Run, accessible through the Execution details:

projects | [Xray Tutorials |/ [XT-355
Execution results [1642678401586]
@ mach @) createsubtask P Linkissue v [Tests

Description

Add a description.

Tests

AddTests
Overall Execution Status
. v Filters v 10 v Columns v
Rank+ Key Summary TestType- Dataset #Defects - Status Actions
(s lE] XT-356 get all dummy users and then get the first user byid Generic 0 W PasseD \- 0
O 2 XT-357 create a dummy user and then get it by id Generic 0 1 passeD Eil
rev 1 Next Total 2 ssues

As we can see here:

et all dummy users and then e thefirst user by id °

+ Fodors ©

Testdetalls €

> hesny

Tips

® after results are imported, in Jira Tests can be linked to existing requirements/user stories, so
you can track the impacts on their coverage.

® results from multiple builds can be linked to an existing Test Plan, to facilitate the analysis of
test result trends across builds.

® results can be associated with a Test Environment, in case you want to analyze coverage and
test results per environment later on. A Test Environment can be a testing stage (e.g. dev,
staging, pre-prod, prod) or an identifier of the device/application used to interact with the system
(e.g. browser, mobile OS).

References

https://karatelabs.github.io/karate/
https://github.com/karatelabs/karate
http://[dummy.restapiexample.com/
https://github.com/bitcoder/junit-processor

https://karatelabs.github.io/karate/
https://github.com/karatelabs/karate
http://dummy.restapiexample.com/
https://github.com/bitcoder/junit-processor

	Testing APIs using Karate DSL

