Testing using Cypress and Cucumber in JavaScript

® Overview
® Requirements
® Description
© Using Jira and Xray as master
© Using Git or other VCS as master
® References

Overview

In this tutorial, we will create Ul tests as Cucumber Scenario(s)/Scenario Outline(s) and use Cypress to implement the tests in JavaScript.

Source-code for this tutorial

Code is available in GiHub; the repo contains some auxiliary scripts.

Requirements

® nodejs

® npm packages
O cypress
O cypress-cucumber-preprocessor
© cucumber-json-merge

Description

For the purpose of this tutorial, we will use a dummy website (source-code here) containing just a few pages to support login/logout kind of features; we
aim to test precisely those features.

Login Page

Please input your user name and password and click the login
button.

User Name: |]
Password: |]

We need to configure Cypress to use the cypress-cucumber-preprocessor, which provides the ability to understand .feature files and also to produce
Cucumber JSON reports.

https://www.cypress.io/
https://robotwebdemo.herokuapp.com/
https://github.com/bitcoder/WebDemo
https://github.com/Xray-App/tutorial-java-cucumber

cypress/plugins/index.js

const cucunber = require(' cypress-cucunber-preprocessor').default

/**

* @ype {Cypress. Pl ugi nConfi g}

*/

nodul e. exports = (on, config) => {
/1 “on” is used to hook into various events Cypress enmits
/1 “config® is the resolved Cypress config
on('file:preprocessor', cucunber())

}

In Cypress' main configuration file, define the base URL of the website under test, the regex of the files that contain the test scenarios (i.e. <...>.feature
files). Other options may be defined e.g for bypassing chromeWebSecurity, additional reporters, the ability to upload results to Cypress infrastructure in the
cloud, etc).

Icypress.json

{
"baseUrl": "https://robotwebdenp. her okuapp. conm’ ",
"testFiles": "**/* feature",
"ignoreTestFiles": [
"*ojs",
P
1,
“reporter": "junit",
"reporterOptions": {
"mochaFile": "test-results/test-output-[hash].xm"
H
"chroneWebSecurity": false,
"projectld': "bfi83g"
}

Next, here is an example of the contents of package.json.

package.json

{
"name": "cypress-cucunber-robotdenp”,
"version": "1.0.0",
"description": "An exanple for Cypress and Cucunber usage using Robot |ogin denp website",
"mai n": "index.js",
"scripts": {
"cypress:open:|local": "CYPRESS_ENvV=l ocal host npm run cypress: open”,
"cypress: open: prod": " CYPRESS_ENV=production npm run cypress: open",
"cypress:open": "cypress open",
"test:local": "CYPRESS _ENv=| ocal host npmrun test --spec 'cypress/integration/**/* feature",
"test:prod": "CYPRESS_ENvV=production npmrun test",
"test": "cypress run --spec 'features/**/* feature' --config integrationFolder=",
"test:debug:local": "CYPRESS_ENV=l ocal host npm run test:debug",
"t est:debug: prod": "CYPRESS_ENV=producti on npmrun test:debug",
"test:debug": "cypress run --headed --browser chrome --env TAGS=' @2e-test' --spec 'cypress/integration/**
/* feature'",
"test:pull-features": "git subnodul e update --renpte gherkin-features & cp -rf gherkin-features/* cypress
/integration & node ./scripts/renove-ol d-features.js",
"attach_screenshots": "node attach_screenshots.js"
}
"author": "",
"l'icense": "Private",
"dependenci es": {
"axios": "~0.18.0",
"cucunber-json-nerge": "0.0.4",
"fs-extra": "~7.0.1",
"glob": "A7.1.3"
}
"devDependenci es": {
"cypress": "~A5.5.0",
"cypress-cucunber - preprocessor": "74.0.0",
"eslint": "75.13.0",
"eslint-config-airbnb-base": "7A12.1.0",
"eslint-config-prettier": "72.9.0",
"eslint-plugin-inmport": "~2. 11.0",
"eslint-plugin-prettier": ""2.6.0",
"husky": "~1.3.1",
"lint-staged": "~8.1.3"
},
"cypress-cucunber - preprocessor": {
"nond obal St epDefinitions": true,
"cucunberJson": {
"generate": true,
"out put Fol der": "cypress/ cucunber-json”,
"filePrefix": "",
"fileSuffix": ".cucunber"
}
H
"husky": {
"hooks": {
"pre-commit": "lint-staged"
}
o
"lint-staged": {
st
"eslint",
"git add"
]
}

Before moving into the actual implementation, we need to decide which workflow we'll use: do we want to use Xray/Jira as the master for writing the
declarative specification (i.e. the Gherkin based Scenarios), or do we want to manage those outside using some editor and store them in Git, for example?

0)

Learn more
Please see Testing in BDD with Gherkin based frameworks (e.g. Cucumber) for an overview of the possible workflows.

The place that you'll use to edit the Cucumber Scenarios will affect your workflow. There are teams that prefer to edit Cucumber Scenarios in
Jira using Xray, while others prefers to edit them by writing the .feature files by hand using some IDE.

Using Jira and Xray as master

This section assumes you will use Xray as master, i.e. the place that you'll be using to edit the specifications (e.g. the scenarios that are part of .feature

files).

The overall flow would be something like this:

1.

OO WN

create Scenario/Scenario Outline as a Test in Jira; usually, it would be linked to an existing "requirement"/Story (i.e. created from the respective
issue screen)

. implement the code related to Gherkin statements/steps and store it in Git, for example
. generate .feature files based on the specification made in Jira

. checkout the code from Git

. run the tests in the ClI

. import the results back to Jira

Usually, you would start by having a Story, or similar (e.g. "requirement"), to describe the behavior of a certain feature and use that to drive your testing.

If you have it, then you can just use the "Create Test" on that issue to create the Scenario/Scenario Outline and have it automatically linked back to the
Story/"requirement.”

Otherwise, you can create the Test using the standard (issue) Create action from Jira's top menu.

https://docs.getxray.app/pages/viewpage.action?pageId=82464309

Calculator / CALC-7905
As a user, | can login the application

Edit Q Comment Assign More v Start Progress ~ Close Issue Admin v

v Details
Type: &) story Status: D (View Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None

<

Description

As a user, | can login the application

<

Test Coverage

Create Test Create Sub-Test Execution

No Tests were found testing the requirement.
Calculator / CALC-7906
As a user, | can logout the application

Edit Q Comment Assign More v Start Progress Close Issue Admin v

v Details
Type: & story Status: D (view Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None

<

Description
As a user, | can logout the application

<

Test Coverage

Create Test Create Sub-Test Execution

No Tests were found testing the requirement.

In this case, we'll create a Cucumber Test, of Cucumber Type "Scenario."

We can fill out the Gherkin statements immediately on the Jira issue "create dialog" or we can create the Test issue first and fill out the details on the next
screen, from within the Test issue. In the latter case, we can take advantage of the built-in Gherkin editor which provides auto-complete for Gherkin steps.

Calculator / CALC-7901

Valid Login

Test Details

Type: Cucumber Scenario Type: Scenario

Scenario: 1 Given browser is opened to login page
2 When user "demo" logs in with password "mode"
3 Then welcome page should be open

After the Test is created it will impact the coverage of related "requirement,” if any.

The coverage and the test results can be tracked in the "requirement" side (e.g. user story). In this case, you may see that coverage changed from being
UNCOVERED to NOTRUN (i.e. covered and with at least one test not run).

Calculator / CALC-7905
As a user, | can login the application

Edit Q Comment Assign More v Start Progress Close Issue Admin v
v Details
Type: & story Status: D (View Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None
Requirement Status: e
v Description

As a user, | can login the application

v Test Coverage

Create Test Create Sub-Test Execution

TEST COVERAGE FOR THE FOLLOWING ANALYSIS SCOPE

Scope: Version; Version: None - latest execution; Environment: All Environments ~ L
= Filter(s)
i v Show (10 v] entries Columns
P Status Resolution 4 Key Summary Test Runs Test Status
o * OPEN Unresolved CALC-7901 Valid Login 0 —

Showing 1 to 1 of 1 entries First Previous |1 Next Last

Additional tests could be created, eventually linked to the same Story or linked to another one (e.g. logout).

The related statement's code is managed outside of Jira and stored in Git, for example.

In Cypress, the test code is stored under cypr ess/ i nt egr at i on directory, which itself contains several other directories. In this case, we've organized
them as follows:

® cypress/integration/ common: step implementation files, in JavaScript.

O cypressl/integration/common/login.js

import { G ven, Wien } from'cypress-cucunber-preprocessor/steps';
i mport Logi nPage from'../../pages/| ogin-page';
i mport Logi nResul tsPage from'../../pages/|ogin-results-page';

G ven(/ browser is opened to |ogin page$/, () => {
Logi nPage. visit();
b

When(' user {string} logs in with password {string}', (usernanme, password) => {
Logi nPage. ent er _user nane(user nane) ;
Logi nPage. ent er _passwor d(passwor d) ;
Logi nPage. pressLogin();

1

Then(/~wel come page shoul d be open$/, () => {
Logi nResul t sPage. expect ().t oBeSuccessful ();

s

Then(/~error page should be open$/, () => {
Logi nResul t sPage. expect ().t oBeUnsuccessful ();

s

O cypressl/integration/common/logout.js

import { G ven, When } from'cypress-cucunber-preprocessor/steps';
i mport LoginPage from'../../pages/|ogin-page';
i nport Logi nResul tsPage from'../../pages/|ogin-results-page';

G ven(/ " browser is opened to |ogin page$/, () => {
Logi nPage. visit();
1)

When(' user {string} logs in with password {string}', (usernanme, password) => {
Logi nPage. ent er _user nane(user nane) ;
Logi nPage. ent er _passwor d(passwor d) ;

Logi nPage. pressLogi n();

s

Then(/~wel come page shoul d be open$/, () => {
Logi nResul t sPage. expect (). toBeSuccessful ();

1
Then(/”error page shoul d be open$/, () => {

Logi nResul t sPage. expect ().t oBeUnsuccessful ();
1)

® cypress/integration/ pages: abstraction of different pages, somehow based on the page-objects model

O cypressl/integration/pages/login.js

i mport Logi nResul tsPage from'./login-results-page';

const USERNAME_FI ELD = 'input[id=usernane_field]";
const PASSWORD_FI ELD = 'input[id=password_field]";
const LOG N_BUTTON = 'input[type=submit]"';

const LOG N_TEXT = 'LOG N ;

cl ass Logi nPage {
static visit() {
cy.visit('/");

}

static enter_username(usernane) {
cy. get (USERNAME_FI ELD)
.type(usernane);

}

static enter_password(password) {
cy. get (PASSWORD FI ELD)
.type(password);
}

static pressLogin() {
cy. get (LOG N_BUTTON) . cont ai ns(LOG N_TEXT)
.click();
return new Logi nResul t sPage();

}
}

export default Logi nPage;

© cypressl/integration/pages/login-results-page.js
const RESULT_HEADER = ' hl';

cl ass Logi nResul t sPage {
static expect() {
return {
toBeSuccessful: () => {
cy. get (RESULT_HEADER) . shoul d(' have. text', ‘Wl conme Page')
b

toBeUnsuccessful : () => {
cy. get (RESULT_HEADER) . shoul d(' have.text', 'Error Page')

export default Logi nResult sPage;

O cypressl/integration/pages/logout-results-page.js

const RESULT_HEADER = ' hl';
cl ass Logout Resul t sPage {
static expect() {
return {

toBeSuccessful: () => {
cy. get (RESULT_HEADER) . shoul d(' have.text', 'Login Page')

export default Logout Resul t sPage;

O cypressl/integration/pages/welcome-page.js

i mport Logi nPage from'./l ogi n-page’

const LOGOUT_LI NK ta';
const LOGOUT_TEXT = 'l ogout"';

cl ass Wl conePage {
static visit() {
cy.visit('/welcone.htm"');

}

static pressLogout () {
cy. get (LOGOUT_LI NK) . cont ai ns(LOGOUT_TEXT)
.click();
return new Logi nPage();

}
}

export default Wl conePage;

You can then export the specification of the test to a Cucumber .feature file via the REST API, or the Export to Cucumber Ul action from within the Test
[Test Execution issue or even based on an existing saved filter. A plugin for your CI tool of choice can be used to ease this task.

So, you can either:

® use the Ul

Calculator / CALC-7901

Valid Login

Edit Q Comment Assign m Start Progress Resolve Issue

v Details Log work
Type: @ Test Agile Board Status:
Priority: * Medium Resolut
Rank to Top
Affects Version/s: None Fix Vers
Rank to Bottom
Component/s: None
Labels: cypressfinte attach files
v Description Voters
Click to add description Stop watching
Watchers
v Test Details Create sub-task
Type: Cucumber
Convert to sub-task
Scenario Type: Scenario
Move
Scenario: Given brows Link page
When user " ssword "mode"

Then welcon Clone

Labels

Delete

v

Pre-Conditions Trigger Jenkins job

Trigger Jenkins job an...

<

Test Sets

This test is not associated with Test | Reset TestRunStatus

Export to Cucumber

Export Test to XML

<

Test Plans

This test is not associated with Test Export Test Runs to CSV

[e]
® use the REST API (more info here)

© #!/bin/ bash
rm-f features/*.feature
curl -u admin:admin "http://jiraserver.exanple.comrest/raven/ 1.0/ export/test?keys=CALC 7905; CALC-

7906&f z=true" -o features.zip
unzip -o features.zip -d features

® use one of the available CI/CD plugins (e.g. see an example of Integration with Jenkins)

We will export the features to a new directory named f eat ur es/ on the root folder of your Cypress project (we'll need to tell Cypress to use this folder).

After being exported, the created .feature(s) will contain references to the Test issue key, eventually prefixed (e.g. "TEST_") depending on an Xray global
setting, and the covered "requirement” issue key, if that's the case. The naming of these files is detailed in Export Cucumber Features.

https://docs.getxray.app/display/XRAY610/Exporting+Cucumber+Tests+-+REST
https://docs.getxray.app/display/XRAY610/Integration+with+Jenkins
https://docs.getxray.app/display/XRAY610/Export+Cucumber+Features

features/1_CALC-7905.feature

@REQ _CALC- 7905
Feature: As a user, | can login the application
#As a user, | can login the application

@EST_CALC 7903

Scenario Qutline: Login Wth Invalid Credentials Should Fail
G ven browser is opened to |ogin page
When user "<usernanme>" logs in with password "<password>"
Then error page should be open

Exanpl es:
username	password
invalid	node
deno	invalid
invalid	invalid
deno	node

@EST_CALC 7902

Scenario: Invalid Login
G ven browser is opened to |ogin page
When user "dummy" logs in with password "password"
Then error page shoul d be open

@EST_CALC 7901

Scenario: Valid Login
G ven browser is opened to |ogin page
When user "demd" logs in with password "node"
Then wel cone page shoul d be open

features/1_CALC-7906.feature

@REQ _CALC- 7906
Feature: As a user, | can logout the application
#As a user, | can |logout the application

@EST_CALC 7904

Scenario: Valid Logout
G ven user is on the wel come page
When user chooses to | ogout
Then | ogi n page should be open

To run the tests and produce Cucumber JSON reports(s), we can either use npmor cypr ess command directly.

npm run test

or instead...

node_nodul es/ cypress/ bin/cypress run --spec 'features/**/* feature' --config integrationFol der=.

This will produce one Cucumber JSON report in cypr ess/ cucunber - j son directory per each .feature file.

The cypress-cucumber-preprocessor package, as of v4.0.0, does not produce reports containing the screenshots embedded.

However, the following script (credits to the user that provided it on GitHub) can be used to update the previous JSON reports so that they contain the
screenshots of the failed tests.

attach_screenshots.js

const fs = require('fs-extra')
const path = require(' path')
const chalk = require(' chal k')

const cucunberJsonDir = './cypress/cucunber-json'
const cucunber ReportFileMap = {}
const cucunber Report Map = {}

const jsonlndentLevel = 2
const ReportDir = './cypress/reports/cucunber-report'
const screenshotsDir = './cypress/screenshots'

get Cucunber Repor t Maps()
addScr eenshot s()

[/ Mappi ng cucunber json files fromthe cucunber-json directory to the features
function get Cucunber Report Maps() {
const files = fs.readdirSync(cucunberJsonDir).filter(file => {
return file.indexOf('.json") > -1
b
files.forEach(file => {
const json = JSON. parse(
fs.readFi | eSync(path.joi n(cucunberJsonDir, file))
)
if (!json[0]) { return }
const [feature] = json[O].uri.split('/"').reverse()
cucunber Report Fi l evap[feature] = file
cucunber Report Map[feature] = json
D)
}

/1 Addi ng screenshots to the respective failed test steps in the feature files
function addScreenshots() {

const prependPat hSegnment = pat hSegment => | ocati on => path.j oi n(pat hSegnent, |ocation)
const readdirPreserveRel ati vePath = |l ocation => fs.readdirSync(location). map(prependPat hSegnent (| ocation))

const readdirRecursive = |ocation => readdirPreserveRel ati vePat h(l ocati on)
.reduce((result, currentValue) => fs.statSync(currentValue).isDirectory()
? result.concat (readdirRecursive(currentVal ue))
resul t.concat (currentVal ue), [])
const screenshots = readdirRecursive(path.resol ve(screenshotsDir)).filter(file => {
return file.indexOh('.png') > -1
b

const featuresList = Array.from(new Set (screenshots. map(x => x.match(/[\w _.]+\.feature/g)[0])))
featuresList.forEach(feature => {
screenshot s. f or Each(screenshot => {

const regex = /(?<=\ --\).*?2((?=\ \(exanple\ \# d+\))|(?=\ \(failed\)))/g
const [scenari oNane] = screenshot. natch(regex)

consol e. i nfo(chal k. blue('\n Addi ng screenshot to cucunber-json report for'))
consol e. i nfo(chal k. bl ue(scenari oNane))

consol e. | og(featuresLi st)

consol e. | og(feature)

consol e. | og(cucunber Repor t Map)

const nyScenari os = cucunber Report Map[feature][0].elenents.filter(
e => scenari oNane. i ncl udes(e. nane)

)
if (!nyScenarios) { return }

https://github.com/TheBrainFamily/cypress-cucumber-preprocessor/issues/382

let foundFailedStep = fal se
nyScenari os. for Each(nyScenari o => {
if (foundFailedStep) {
return
}
let nyStep
if (screenshot.includes('(failed)')) {
nmyStep = nyScenari o. steps. find(
step => step.result.status === 'failed
)
} else {
nyStep = nyScenari o. steps. find(
step => step.nane.includes(' screenshot")
)
}
if (I'myStep) {
return
}
const data = fs.readFil eSync(
pat h. resol ve(screenshot)
)
if (data) {
const base64lmage = Buffer.fron(data, 'binary').toString('base64')
if (!'myStep. enbeddi ngs) {
ny St ep. enbeddi ngs = []
ny St ep. enbeddi ngs. push({ data: base64l mage, mine_type: 'inage/png })
foundFai |l edStep = true

}

9]
//'Wite JSON with screenshot back to report file.

fs.writeFileSync(
pat h. j oi n(cucunberJsonDi r, cucunberReportFil eMap[feature]),
JSON. stringify(cucunber Report Map[feature], null, jsonlndentlLevel)

19
b

The cucumber-json-merge utility may be handy to merge the results of each feature, so they can be then submitted to Xray as one single file.

Next, is an example of a shell script with all these steps.

example of a Bash script to run the tests and produce a unified Cucumber JSON report

#!/ bi n/ bash

rm-f cypress/cucunber-json/*

npmrun test

npm run attach_screenshots
cucunber-json-nerge -d cypress/cucunber-json/

After running the tests, results can be imported to Xray via the REST API, or the Import Execution Results action within the Test Execution, or by using
one of the available CI/CD plugins (e.g. see an example of Integration with Jenkins).

curl -H "Content-Type: application/json" -X POST -u admin:admn --data @report.json" http://jiraserver.exanple.
com rest/raven/ 1. 0/i nport/execution/cucunber

https://github.com/bitcoder/cucumber-json-merge
https://docs.getxray.app/display/XRAY610/Integration+with+Jenkins

{D Which Cucumber endpoint/"format” to use?

To import results, you can use two different endpoints/“formats" (endpoints described in Import Execution Results - REST):

1. the "standard cucumber" endpoint
2. the "multipart cucumber" endpoint

The standard cucumber endpoint (i.e. /import/execution/cucumber) is simpler but more restrictive: you cannot specify values for custom fields
on the Test Execution that will be created. This endpoint creates new Test Execution issues unless the Feature contains a tag having an issue
key of an existing Test Execution.

The multipart cucumber endpoint will allow you to customize fields (e.g. Fix Version, Test Plan) if you wish to do so, on the Test Execution that
will be created. Note that this endpoint always creates new Test Executions (as of Xray v4.2).

In sum, if you want to customize the Fix Version, Test Plan and/or Test Environment of the Test Execution issue that will be created, you'll have
to use the "multipart cucumber" endpoint.

A new Test Execution will be created (unless you originally exported the Scenarios/Scenario Outlines from a Test Execution).

Calculator / CALC-7916

Execution results [1604421730254]

#Edit QComment Assign More v StartProgress Resolvelssue Closelssue Admin v
v Details ~
Type: [Test Execution Status: (EED (view Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None
Test Environments: None .
Test Plan: None

v Description
Click to add description

v Tests
+ Add v
Overall Execution Status
I
PASS 1 FAIL
Total Tests: 4
= Filter(s)
B Show entries Columns +
4 Rank Key Summary Test Type #Req #Def Assignee Status
CALC- Login With Invalid)
0o 7903 Credentials Should Fail Cucumber 1 0 Administrator - IR d
m] 2 %\ézc’ Invalid Login Cucumber 1 0 Administrator »
m] 3 ?:é‘f’ Valid Login Cucumber 1 0 Administrator »
(m] 4 CALC- Valid Logout Cucumber 1 0 Administrator »
7904
Showing 1 to 4 of 4 entries First Previous [l Next Last

One of the tests fails (on purpose).

The execution screen details of the Test Run will provide overall status information and Gherkin statement-level results, therefore we can use it to analyze
the failing test.

https://docs.getxray.app/display/XRAY610/Import+Execution+Results+-+REST

View on Board
v Tests

Overall Execution Status

3 PASS 1 FAIL

Total Tests: 4

= Filter(s)

Show entries Columns +

4 Rank Key Summary Test Type #Req #Def Assignee Status

CALC- Login With Invalid -
(m] 1 7903 Credentials Should Fail Cucumber 1 0 Administrator .

Execution Details I

O 2 (7::;;:_ Invalid Login Cucumber 1 0 Administrator

EXECUTE INLINE

CALC- . . -
m] 3 7901 Valid Login Cucumber 1 0 Administrator [ZEEN PASS
[pass]

O 4 (7::52- Valid Logout Cucumber 1 0 Administrator

Showing 1 to 4 of 4 entries First Previous . Next ABORTED

DI ARER

A given example can be expanded to see all Gherkin statements and, if available, it is possible to see also the attached screenshot(s).

Calculator / Test Execution: CALC-7916 / Test: CALC-7903

a o . q q L] Import Execution Results Export to Cucumber A Return to Test Execution Next »
Login With Invalid Credentials Should Fail
None
Test Issue Links (1) A~
tests
) CALC-7905 As a user, | can login the application a OPEN
Custom Fields -~
There are no Test Run Custom Fields defined.
Test Details ~
Test Type: Cucumber
Scenario Type: Scenario Outline
Scenario: 1 Given browser is opened to login page
2 When user "<username>" logs in with password "<password>"
3 Then error page should be open
4
5 Examples:
6 | username | password |
7 | invalid | mode |
8 | demo | invalid |
9 | invalid | invalid |
10 | demo | mode |
Examples -~
<username> <password> Duration status
» invalid mode 1513.000ms EEED
» demo invalid 779.000ms (ZESD
» invalid invalid 8sgoooms (S
—— » demo mode 4783000 ms (D

Examples

<usernames <password> ouration Stotus
invalia mode 1613.000 ms
demo invalid 779.000 ms

invalia invalia 858.000ms

«vv

demo mode 4783.000 FAIL
ms

Steps

Given browser is opened to login page 176,000 ms

When user “demor logs in with password "mode” 612.000 ms

Then errr page should be apen —_— o s Al

Assertionkrror: Tined out retrying: espected ' @ evidunce.ston 120510
' to have text 'Error Page', but the text was 'Welcome Page'
+ expected - actual

-'Welcome Page'
+'Error Page'

at Object. 1 (https://r 5 .com/__cypress/tests?p=features/1_CALC-7905.feature:134:33)

at Context.eval (https://robotwebdemo.herokuapp.com/__cypress/tests?p=features/l_CALC-7905.feature:26:41)

at Context.resolveAndRunStepDefinition (https://robotwebdemo.herokuapp.com/__cypress/tests?p=features/l_CALC-7905.feature:10674:9)
at Context.eval (https://robotwebdemo.herokuapp.com/__cypress/tests?p=features/1_CALC-7905.feature:10015:35)

Note: in this case, the bug was on the Scenario Outline example which was using a valid username/password combination.

Results are reflected on the covered item (e.g. Story). On the issue screen, coverage now shows that the item is OK based on the latest testing results
which can also be tracked within the Test Coverage panel bellow.

Calculator / CALC-7905
As a user, | can login the application

Edit Q Comment Assign More v Start Progress ~ Close Issue Admin v

v Details
Type: & story Status: D (View Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None

<

Description

As a user, | can login the application

v Test Coverage

Create Test Create Sub-Test Execution

TEST COVERAGE FOR THE FOLLOWING ANALYSIS SCOPE

Scope: Version; Version: None - latest execution; Environment: All Environments ~ m
= Filter(s)
=5V Show entries Columns ~
P Status Resolution A Key Summary Test Runs Test Status
o * OPEN Unresolved CALC-7901 Valid Login 0
o =+ OPEN Unresolved CALC-7902 Invalid Login H
o * OPEN Unresolved ~ CALC-7903 Login With Invalid Credentials Should Fail 0 [raL |

Using Git or other VCS as master

You can edit your .feature files using your IDE outside of Jira (eventually storing them in your VCS using Git, for example) alongside the remaining test
code.

In any case, you'll need to synchronize your .feature files to Jira so that you can have visibility of them and report results against them.

The overall flow would be something like this:

1. look at the existing "requirement"/Story issue keys to guide your testing; keep their issue keys
2. specify Cucumber/Gherkin .feature files in your IDE supporting Cypress and store it in Git, for example
3. implement the code related to Gherkin statements/steps and store it in Git, for example

. checkout the Cypress related code from Git
. run the tests in the ClI
. import the results back to Jira

0o~NO O A

. import/synchronize the .feature files to Xray to provision or update corresponding Test entities
. export/generate .feature files from Jira, so that they contain references to Tests and requirements in Jira

Usually, you would start by having a Story, or similar (e.g. "requirement"), to describe the behavior of a certain feature and use that to drive your testing.

Calculator / CALC-7905
As a user, | can login the application

Edit Q Comment Assign More v Start Progress Close Issue Admin v
v Details
Type: ﬂ Story Status:
Priority: 2 Major Resolution:
Affects Version/s: None Fix Version/s:
Component/s: None
Labels: None

Reaurement stavs: (TN

<

Description

As a user, | can login the application

<

Test Coverage

No Tests were found testing the requirement.
Calculator / CALC-7906
As a user, | can logout the application

Edit Q Comment Assign More v Start Progress Close Issue Admin v
v Details
Type: E Story Status:
Priority: 2 Major Resolution:
Affects Version/s: None Fix Version/s:
Component/s: None
Labels: None

<

Description

As a user, | can logout the application

<

Test Coverage

D (View Workflow)
Unresolved

None

Create Test Create Sub-Test Execution

CIED (View Workflow)
Unresolved

Create Test Create Sub-Test Execution

No Tests were found testing the requirement.

Having those to guide testing, we could then move to Cypress to describe and implement the Cucumber test scenarios.

In Cypress, test related code is stored inside the cypr ess/ i nt egr at i on directory, which itself contains several other directories. In this case, we've

organized them as follows:

® cypress/integration/common: step implementation files, in JavaScript.

O cypressl/integration/common/login.js

import { G ven, Wien } from'cypress-cucunber-preprocessor/steps';
i mport Logi nPage from'../../pages/| ogin-page';
i mport Logi nResul tsPage from'../../pages/|ogin-results-page';

G ven(/ browser is opened to |ogin page$/, () => {
Logi nPage. visit();
b

When(' user {string} logs in with password {string}', (usernanme, password) => {
Logi nPage. ent er _user nane(user nane) ;
Logi nPage. ent er _passwor d(passwor d) ;
Logi nPage. pressLogin();

1

Then(/~wel come page shoul d be open$/, () => {
Logi nResul t sPage. expect ().t oBeSuccessful ();

s

Then(/~error page should be open$/, () => {
Logi nResul t sPage. expect ().t oBeUnsuccessful ();

s

O cypressl/integration/common/logout.js

import { G ven, When } from'cypress-cucunber-preprocessor/steps';
i mport LoginPage from'../../pages/|ogin-page';
i nport Logi nResul tsPage from'../../pages/|ogin-results-page';

G ven(/ " browser is opened to |ogin page$/, () => {
Logi nPage. visit();
1)

When(' user {string} logs in with password {string}', (usernanme, password) => {
Logi nPage. ent er _user nane(user nane) ;
Logi nPage. ent er _passwor d(passwor d) ;

Logi nPage. pressLogi n();

s

Then(/~wel come page shoul d be open$/, () => {
Logi nResul t sPage. expect (). toBeSuccessful ();

1
Then(/”error page shoul d be open$/, () => {

Logi nResul t sPage. expect ().t oBeUnsuccessful ();
1)

® cypress/integration/ pages: abstraction of different pages, somehow based on the page-objects model

O cypressl/integration/pages/login.js

i mport Logi nResul tsPage from'./login-results-page';

const USERNAME_FI ELD = 'input[id=usernane_field]";
const PASSWORD_FI ELD = 'input[id=password_field]";
const LOG N_BUTTON = 'input[type=submit]"';

const LOG N_TEXT = 'LOG N ;

cl ass Logi nPage {
static visit() {
cy.visit('/");

}

static enter_username(usernane) {
cy. get (USERNAME_FI ELD)
.type(usernane);

}

static enter_password(password) {
cy. get (PASSWORD FI ELD)
.type(password);
}

static pressLogin() {
cy. get (LOG N_BUTTON) . cont ai ns(LOG N_TEXT)
.click();
return new Logi nResul t sPage();

}
}

export default Logi nPage;

© cypressl/integration/pages/login-results-page.js
const RESULT_HEADER = ' hl';

cl ass Logi nResul t sPage {
static expect() {
return {
toBeSuccessful: () => {
cy. get (RESULT_HEADER) . shoul d(' have. text', ‘Wl conme Page')
b

toBeUnsuccessful : () => {
cy. get (RESULT_HEADER) . shoul d(' have.text', 'Error Page')

export default Logi nResult sPage;

O cypressl/integration/pages/logout-results-page.js

const RESULT_HEADER = ' hl';
cl ass Logout Resul t sPage {
static expect() {
return {

toBeSuccessful: () => {
cy. get (RESULT_HEADER) . shoul d(' have.text', 'Login Page')

export default Logout Resul t sPage;

O cypressl/integration/pages/welcome-page.js

i mport Logi nPage from'./l ogi n-page’

const LOGOUT_LI NK ta';
const LOGOUT_TEXT = 'l ogout"';

cl ass Wl conePage {
static visit() {
cy.visit('/welcone.htm"');

}

static pressLogout () {
cy. get (LOGOUT_LI NK) . cont ai ns(LOGOUT_TEXT)
.click();
return new Logi nPage();

}
}

export default Wl conePage;

® cypress/integration/login: Cucumber .feature files, containing the tests as Gherkin Scenario(s)/Scenario Outline(s). Please note that
each "Feature: <..>" section should be tagged with the issue key of the corresponding "requirement"/story in Jira. You may need to add a prefix (e.
g. "REQ_") before the issue key, depending on a global Xray setting.

O cypressl/integration/login/login.feature

@REQ_CALC- 7905
Feature: As a user, | can login the applicaiton

Scenario: Valid Login
G ven browser is opened to |ogin page
Wien user "denmd" logs in with password "node"
Then wel come page shoul d be open

Scenario: Invalid Login
G ven browser is opened to |ogin page
When user "dummy" logs in with password "password"
Then error page should be open

Scenario Qutline: Login Wth Invalid Credentials Should Fail
G ven browser is opened to | ogin page
When user "<usernanme>" logs in wth password "<password>"
Then error page should be open

Exanpl es:
username	password
invalid	node
deno	invalid
invalid	invalid

o cypress/integration/login/logout.feature

@REQ _CALC- 7906
Feature: As a user, | can logout the application

Scenario: Valid Logout
G ven user is on the wel come page
When user chooses to | ogout
Then | ogi n page shoul d be open

Before running the tests in the CI environment, you need to import your .feature files to Xray/Jira; you can invoke the REST API directly or use one of the
available pluginsi/tutorials for ClI tools.

zip -r features.zip cypress/integration/ -i *.feature
curl -H "Content-Type: nultipart/formdata" -u admn:adnmin -F "file=@eatures. zip" "http://jiraserver.exanple.
comrest/raven/ 1. 0/i nport/feature?proj ect Key=CALC'

@ Please note

Each Scenario of each .feature will be created as a Test issue that contains unique identifiers, so that if you import once again then Xray can
update the existent Test and don't create any duplicated tests.

Afterwards, you can export those features out of Jira, based on some criteria so they are properly tagged with corresponding issue keys; this is important
because results need to contain these references.

You can then export the specification of the test to a Cucumber .feature file via the REST API, or the Export to Cucumber Ul action from within the Test
[Test Execution issue or even based on an existing saved filter. A plugin for your CI tool of choice can be used to ease this task.

So, you can either:

® use the Ul

Calculator / CALC-7901

Valid Login

Edit Q Comment Assign m Start Progress Resolve Issue

v Details Log work
Type: @ Test Agile Board Status:
Priority: * Medium Resolut
Rank to Top
Affects Version/s: None Fix Vers
Rank to Bottom
Component/s: None
Labels: cypressfinte attach files
v Description Voters
Click to add description Stop watching
Watchers
v Test Details Create sub-task
Type: Cucumber
Convert to sub-task
Scenario Type: Scenario
Move
Scenario: Given brows Link page
When user " ssword "mode"

Then welcon Clone

Labels

Delete

v

Pre-Conditions Trigger Jenkins job

Trigger Jenkins job an...

<

Test Sets

This test is not associated with Test | Reset TestRunStatus

Export to Cucumber

Export Test to XML

<

Test Plans

This test is not associated with Test Export Test Runs to CSV

[e]
® use the REST API (more info here)

© #!/bin/bash

rm-f features/*.feature

curl -u admin:adnmin "http://jiraserver.exanple.comrest/raven/ 1.0/ export/test?keys=CALC- 7905; CALC-
7906&f z=true" -o features.zip

unzip -o features.zip -d features

® use one of the available CI/CD plugins (e.g. see an example of Integration with Jenkins)

For CI only purpose, we will export the features to a new temporary directory named f eat ur es/ on the root folder of your Cypress project (we'll need to
tell Cypress to use this folder). Please note that while implementing the tests, .feature files should be edited inside the cypress/integration/login folder, in
this case;

After being exported, the created .feature(s) will contain references to the Test issue keys, eventually prefixed (e.g. "TEST_") depending on an Xray global
setting, and the covered "requirement" issue key, if that's the case. The naming of these files is detailed in Export Cucumber Features.

https://docs.getxray.app/display/XRAY610/Exporting+Cucumber+Tests+-+REST
https://docs.getxray.app/display/XRAY610/Integration+with+Jenkins
https://docs.getxray.app/display/XRAY610/Export+Cucumber+Features

features/1_CALC-7905.feature

@REQ_CALC- 7905
Feature: As a user, | can login the application
#As a user, | can login the application

@EST_CALC- 7903 @ypress/integration/login/login.feature

Scenario Qutline: Login Wth Invalid Credentials Should Fail
G ven browser is opened to |ogin page
Wien user "<usernanme>" |ogs in with password "<password>"
Then error page should be open

Exanpl es:
username	password
invalid	node
demo	invalid
invalid	invalid
denmo	node

@EST_CALC- 7902 @ypress/integration/login/login.feature
Scenario: lInvalid Login
G ven browser is opened to |ogin page
When user "dummy” logs in with password "password"
Then error page should be open

@EST_CALC- 7901 @ypress/integration/login/login.feature
Scenario: Valid Login
G ven browser is opened to |ogin page
Wien user "denp" logs in with password "nopde"
Then wel come page shoul d be open(base)

To run the tests and produce Cucumber JSON reports(s), we can either use npmor cypr ess command directly.

npmrun test
or instead...

node_nodul es/ cypress/ bin/cypress run --spec 'features/**/* feature' --config integrationFol der=.

This will produce one Cucumber JSON report in cypr ess/ cucunber - j son directory per each .feature file.
The cypress-cucumber-preprocessor package, as of v4.0.0, does not produce reports containing the screenshots embedded.

However, the following script (credits to the user that provided it on GitHub) can be used to update the previous JSON reports so that they contain the
screenshots of the failed tests.

attach_screenshots.js

const fs = require('fs-extra')
const path = require(' path')
const chalk = require('chalk")

const cucunberJsonDir = './cypress/cucunber-json'
const cucunber ReportFileMap = {}

const cucunber Report Map = {}

const jsonlndentlLevel = 2

https://github.com/TheBrainFamily/cypress-cucumber-preprocessor/issues/382

const ReportDir = './cypress/reports/cucunber-report’
const screenshotsDir = "'./cypress/screenshots'

get Cucunber Repor t Maps()
addScr eenshot s()

[/ Mappi ng cucunber json files fromthe cucunber-json directory to the features
function get Cucunber Report Maps() {
const files = fs.readdirSync(cucunberJsonDir).filter(file => {
return file.indexOf('.json") > -1
9]
files.forEach(file => {
const json = JSON. parse(
fs.readFi |l eSync(path.join(cucunberJsonDir, file))
)
if (!json[0]) { return }
const [feature] = json[O].uri.split('/").reverse()
cucunber Report Fil evap[feature] = file
cucunber Report Map[feature] = json
9]
}

/1 Addi ng screenshots to the respective failed test steps in the feature files
function addScreenshots() {

const prependPat hSegnent = pat hSegnent => | ocati on => path.joi n(pat hSegnent, | ocation)
const readdirPreserveRel ativePath = | ocation => fs.readdirSync(location).map(prependPat hSegnent (| ocation))

const readdirRecursive = |ocation => readdirPreserveRel ativePat h(| ocati on)
.reduce((result, currentValue) => fs.statSync(currentValue).isDirectory()
? resul t.concat (readdi r Recursive(currentVal ue))
resul t.concat (currentValue), [])
const screenshots = readdi rRecursive(path.resolve(screenshotsbDir)).filter(file => {
return file.indexO(".png') > -1
b

const featuresList = Array.fron(new Set (screenshots. map(x => x. match(/[\w _.]+\.feature/g)[0])))
featuresList.forEach(feature => {
screenshots. f or Each(screenshot => {

const regex = /(?<=\ --\).*?2((?=\ \(exanple\ \#\d+\))|(?=\ \(failed\)))/g
const [scenari oNane] = screenshot. natch(regex)

consol e. i nfo(chal k. blue('\n Addi ng screenshot to cucunber-json report for'))
consol e. i nfo(chal k. bl ue(scenari oNane))

consol e. | og(featuresList)
consol e. | og(feature)
consol e. | og(cucunber Repor t Map)
const nyScenarios = cucunber Report Map[feature][0].elenments.filter(
e => scenari oNane. i ncl udes(e. nane)
)
if (!nyScenarios) { return }
| et foundFailedStep = fal se
nyScenari os. for Each(nyScenari o => {
if (foundFailedStep) {
return
}
let nyStep
if (screenshot.includes('(failed)')) {
nyStep = myScenari o. steps. find(
step => step.result.status === 'failed
)
} else {
nyStep = nmyScenari o. steps. find(
step => step.nane.includes('screenshot')

)

}
if (!myStep) {
return

}

const data = fs.readFil eSync(
pat h. resol ve(screenshot)
)
if (data) {
const base64lmage = Buffer.fron(data, 'binary').toString(' base64')
if (!nmyStep. enbeddi ngs) {
ny St ep. enbeddi ngs = []
nmy St ep. enbeddi ngs. push({ data: base64l mage, mine_type: 'inage/png })
foundFai |l edStep = true

}
9]
//Wite JSON with screenshot back to report file.
fs.witeFileSync(
pat h. j oi n(cucunber JsonDi r, cucunber ReportFil eMap[feature]),
JSON. stringify(cucunber Report Map[feature], null, jsonlndentLevel)

b
b

The cucumber-json-merge utility may be handy to merge the results of each feature, so they can be then submitted to Xray as one single file.
Next, is an example of a shell script with all these steps.

example of a Bash script to run the tests and produce a unified Cucumber JSON report

#! / bi n/ bash

rm-f cypress/cucunber-json/*

npm run test

npm run attach_screenshots
cucunber-json-nerge -d cypress/cucunber-json/

After running the tests, results can be imported to Xray via the REST API, or the Import Execution Results action within the Test Execution, or by using
one of the available CI/CD plugins (e.g. see an example of Integration with Jenkins).

example of a Bash script to import results using the standard Cucumber endpoint
#! / bi n/ bash

curl -H "Content-Type: application/json" -X POST -u adnmin:admn --data @report.json" http://jiraserver.exanple.
com rest/raven/ 1. 0/i nport/execution/ cucunber

https://github.com/bitcoder/cucumber-json-merge
https://docs.getxray.app/display/XRAY610/Integration+with+Jenkins

{D Which Cucumber endpoint/"format” to use?

To import results, you can use two different endpoints/“formats" (endpoints described in Import Execution Results - REST):

1. the "standard cucumber" endpoint
2. the "multipart cucumber" endpoint

The standard cucumber endpoint (i.e. /import/execution/cucumber) is simpler but more restrictive: you cannot specify values for custom fields
on the Test Execution that will be created. This endpoint creates new Test Execution issues unless the Feature contains a tag having an issue
key of an existing Test Execution.

The multipart cucumber endpoint will allow you to customize fields (e.g. Fix Version, Test Plan) if you wish to do so, on the Test Execution that
will be created. Note that this endpoint always creates new Test Executions (as of Xray v4.2).

In sum, if you want to customize the Fix Version, Test Plan and/or Test Environment of the Test Execution issue that will be created, you'll have
to use the "multipart cucumber" endpoint.

A new Test Execution will be created (unless you originally exported the Scenarios/Scenario Outlines from a Test Execution).

Calculator / CALC-7916

Execution results [1604421730254]

#Edit QComment Assign More v StartProgress Resolvelssue Closelssue Admin v
v Details ~
Type: [Test Execution Status: (EED (view Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None
Test Environments: None .
Test Plan: None

v Description
Click to add description

v Tests
+ Add v
Overall Execution Status
I
PASS 1 FAIL
Total Tests: 4
= Filter(s)
B Show entries Columns +
4 Rank Key Summary Test Type #Req #Def Assignee Status
CALC- Login With Invalid)
0o 7903 Credentials Should Fail Cucumber 1 0 Administrator - IR d
m] 2 %\ézc’ Invalid Login Cucumber 1 0 Administrator »
m] 3 ?:é‘f’ Valid Login Cucumber 1 0 Administrator »
(m] 4 CALC- Valid Logout Cucumber 1 0 Administrator »
7904
Showing 1 to 4 of 4 entries First Previous [l Next Last

One of the tests fails (on purpose).

The execution screen details of the Test Run will provide overall status information and Gherkin statement-level results, therefore we can use it to analyze
the failing test.

https://docs.getxray.app/display/XRAY610/Import+Execution+Results+-+REST

View on Board
v Tests

Overall Execution Status

3 PASS 1 FAIL

Total Tests: 4

= Filter(s)

Show entries Columns +

4 Rank Key Summary Test Type #Req #Def Assignee Status

CALC- Login With Invalid -
(m] 1 7903 Credentials Should Fail Cucumber 1 0 Administrator .

Execution Details I

O 2 (7::;;:_ Invalid Login Cucumber 1 0 Administrator

EXECUTE INLINE

CALC- . . -
m] 3 7901 Valid Login Cucumber 1 0 Administrator [ZEEN PASS
[pass]

O 4 (7::52- Valid Logout Cucumber 1 0 Administrator

Showing 1 to 4 of 4 entries First Previous . Next ABORTED

DI ARER

A given example can be expanded to see all Gherkin statements and, if available, it is possible to see also the attached screenshot(s).

Calculator / Test Execution: CALC-7916 / Test: CALC-7903

a o . q q L] Import Execution Results Export to Cucumber A Return to Test Execution Next »
Login With Invalid Credentials Should Fail
None
Test Issue Links (1) A~
tests
) CALC-7905 As a user, | can login the application a OPEN
Custom Fields -~
There are no Test Run Custom Fields defined.
Test Details ~
Test Type: Cucumber
Scenario Type: Scenario Outline
Scenario: 1 Given browser is opened to login page
2 When user "<username>" logs in with password "<password>"
3 Then error page should be open
4
5 Examples:
6 | username | password |
7 | invalid | mode |
8 | demo | invalid |
9 | invalid | invalid |
10 | demo | mode |
Examples -~
<username> <password> Duration status
» invalid mode 1513.000ms EEED
» demo invalid 779.000ms (ZESD
» invalid invalid 8sgoooms (S
—— » demo mode 4783000 ms (D

Examples ~

<usernames <password> ouration Stotus

[mode 1513.000 ms
> demo invatia 779000 ms
» vl invalig 858000 ms
v demo mode 4783.000
ms
stons
Given browser i apend to lagin page veo0oms ¢)
‘When user "demo* logs in with password "mode" PRI pass
Then error page should be open — i)

Assertionirror: Timed out retrying: expacted | & evdence step12.0n

' to have text 'Error Page', but the text was 'Welcome Page'
+ expected - actual

-'Welcome Page'
+'Error Page'

at Object. 1 (https:// 5 .com/__cypress/tests?p=features/1_CALC-7905.feature:134:33)

at Context.eval (https://robotwebdemo.herokuapp.com/__cypress/tests?p=features/1_CALC-7905.feature:26:41)

at Context.resolveAndRunStepDefinition (https://robotwebdemo.herokuapp.com/__cypress/tests?p=features/1_CALC-7905.feature:10674:9)
at Context.eval (https://robotwebdemo.herokuapp.com/__cypress/tests?p=features/1_CALC-7905.feature:10015:35)

Note: in this case, the bug was on the Scenario Outline example which was using a valid username/password combination.

Results are reflected on the covered item (e.g. Story). On its issue screen, coverage now shows that the item is OK based on the latest testing results, that
can also be tracked within the Test Coverage panel bellow.

Calculator / CALC-7905
As a user, | can login the application

Edit Q Comment Assign More v Start Progress Close Issue Admin v

v Details
Type: & story Status: D (View Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None

<

Description

As a user, | can login the application

v Test Coverage
Create Test Create Sub-Test Execution

TEST COVERAGE FOR THE FOLLOWING ANALYSIS SCOPE

Scope: Version; Version: None - latest execution; Environment: All Environments ~ m

= Filter(s)

Show entries Columns ~

P Status Resolution A Key Summary Test Runs Test Status
o * OPEN Unresolved CALC-7901 Valid Login 0 PASS]
O T opeN Unresolved ~ CALC-7902 Invalid Login 0 ~ pAss |
O "™ OoPEN Unresolved ~ CALC-7903 Login With Invalid Credentials Should Fail 0 [raL]

References

Cypress

Cypress documentation

cypress-cucumber-example

issue related to adding screenshots to the cucumber JSON report(s)

https://www.cypress.io/
https://docs.cypress.io/
https://github.com/TheBrainFamily/cypress-cucumber-example
https://github.com/TheBrainFamily/cypress-cucumber-preprocessor/issues/382

	Testing using Cypress and Cucumber in JavaScript

