
Testing using MiniTest in Ruby
Overview
In this tutorial, we will create some tests in Ruby using Minitest and the " " gem.minitest-reporters

The "minitest-junit" could also be used, with minor changes to the code below, particularly in the "test_helper.rb".

Requirements
Install minitest and minitest-reporters gem (or the "minitest-junit" gem as an alternative)

gem install minitest minitest-reporters

Description
The code that follows is from the .minitest github project

Let's start by using a sample Ruby class.

lib/meme.rb

class Meme
 def i_can_has_cheezburger?
 "OHAI!"
 end
 def will_it_blend?
 "YES!"
 end
end

The tests will require some common code that can be written in a "test_helper" Ruby script.

test/test_helper.rb

$LOAD_PATH.unshift File.expand_path('../lib', __FILE__)
require 'meme'
require 'minitest/autorun'
require "minitest/reporters"
Minitest::Reporters.use! Minitest::Reporters::JUnitReporter.new

Writing some unit tests is straightforward.

https://github.com/kern/minitest-reporters
https://github.com/seattlerb/minitest

test/meme_unit_test.rb

require 'test_helper'
class MemeTest < Minitest::Test
 def setup
 @meme = Meme.new
 end
 def test_that_kitty_can_eat
 assert_equal "OHAI!", @meme.i_can_has_cheezburger?
 end
 def test_that_it_will_not_blend
 refute_match /^no/i, @meme.will_it_blend?
 end
 def test_that_will_be_skipped
 skip "test this later"
 end
end

MiniTest also supports RSpec-like features such as the ability to use "specs". In this case, the test is wrapped inside one or multiple "describe" blocks, and
is consubstantiated in an "it" block.

test/meme_spec_test.rb

require 'test_helper'
describe Meme do
 before do
 @meme = Meme.new
 end
 describe "when asked about cheeseburgers" do
 it "must respond positively" do
 @meme.i_can_has_cheezburger?.must_equal "OHAI!"
 end
 end
 describe "when asked about blending possibilities" do
 it "won't say no" do
 @meme.will_it_blend?.wont_match /^no/i
 end
 end
end

The two different approaches are valid and their results should be similar.

After running the tests and generating the JUnit XML report(s), it/they can be imported to Xray (either by the REST API or through the Import Execution
 action within the Test Execution).Results

rake test

Several JUnit XML will be produced:

TEST-MemeTest.xml
TEST-Meme-when-asked-about-blending-possibilities.xml
TEST-Meme-when-asked-about-cheeseburgers.xml

TEST-MemeTest.xml contains the results of the unit tests. The other two files contain results related to the "spec" test.

Note: This example could be further optimized to obtain just a JUnit XML file containing the results for the two different test classes.

https://docs.getxray.app/download/attachments/82465080/TEST-MemeTest.xml?version=2&modificationDate=1651852506233&api=v2
https://docs.getxray.app/download/attachments/82465080/TEST-Meme-when-asked-about-blending-possibilities.xml?version=2&modificationDate=1651852504379&api=v2
https://docs.getxray.app/download/attachments/82465080/TEST-Meme-when-asked-about-cheeseburgers.xml?version=2&modificationDate=1651852502674&api=v2

The test is mapped to a Generic Test in Jira, and the field contains the name of Ruby test class concatenated with the name of Generic Test Definition
the method that implements the test case.

The Execution Details of the Generic Test contains information about the Test Suite, which in the case of the unit tests, corresponds to the name of the
class.

For the spec-related tests, they're mapped in a slightly different way: the multiple "describe" are concatenated using "::", along with the name of the "it"
block, preceded by "test_<counter>".

References
https://github.com/seattlerb/minitest
https://github.com/kern/minitest-reporters
https://github.com/aespinosa/minitest-junit
https://github.com/Devskiller/devskiller-sample-ruby-calculator

https://github.com/seattlerb/minitest
https://github.com/kern/minitest-reporters
https://github.com/aespinosa/minitest-junit
https://github.com/Devskiller/devskiller-sample-ruby-calculator

	Testing using MiniTest in Ruby

