Testing web applications using Applitools Eyes

Owdnaieywou'll learn
Prerequisites
* |ntegrathgDefin&tagts using Playwright-test
o ®ARHd visual validations with Applitools Eyes
® Run theltésttatidpuskutte test report to Xray
o e Jikaalidate in Jira that the test results are available
® Tips
* References

Source-code for this tutorial

® code is available in GitHub

Overview

Playwright is a recent browser automation tool that provides an alternative to Selenium.

Applitools Eyes is a visual Al test automation tool that have an SDK available that you can add to your
test project allowing visual validations.

Prerequisites

For this example we will use Playwright Test Runner and Applitools Eyes SDK.

We will need:

® Access to a demo site that we aim to test
® Node.js environment with Playwright and Playwright Test Runner
® Applitools Eyes SDK

To start using the Playwright Test Runner please follow the Get Started documentation.

The tests consist in validating 3 features of the demo site: Home link, Find owners functionality and
veterinarians link.

We want to add visual validations to these tests, so we have included the Applitools Eyes SDK to be able
to use the comparison abilities of the tool.

Before coding the tests start by registering in the Applitools Eyes site and obtain an API-KEY (that is
what we will use in the test execution to ship screenshots to the tool for comparison), more information
on how to do it here.

We started by defining PageObijects that will represent the pages we will interact with, we have defined
three, as we see below:

https://github.com/microsoft/playwright-test/blob/master/README.md
https://applitools.com/docs/topics/sdk/sdk.html
https://xray-essentials-petclinic.herokuapp.com/
https://github.com/microsoft/playwright-test/blob/master/README.md
https://applitools.com/docs/api/eyes-sdk/index-gen/classindex-playwright-javascript.html
https://github.com/microsoft/playwright-test/blob/master/README.md
https://github.com/microsoft/playwright-test#get-started
https://xray-essentials-petclinic.herokuapp.com/
https://applitools.com/docs/topics/overview/obtain-api-key.html?Highlight=api%20key
https://github.com/Xray-App/tutorial-js-playwright-Applitools-Eyes

/models/owners.js

const config = require ("../config/config.json");
cl ass OanersPage {

constructor(page) {
t hi s. page = page;
}

async navigate() {
awai t this. page.goto(config.endpoint);

}

async click_find_owners_button(){
await this.page.click(config.find_owners_button);

}
}

nodul e. exports = { OwnersPage };

J/models/home.js

const config = require ("../config/config.json");
cl ass HonePage {

constructor(page) {
thi s. page = page;
}

async navigate() {
awai t this. page.goto(config.endpoint);

}

async get MenuEntry(){
return await this.page.locator(config.top_nenu_entry).first();

}

async get HomeText () {
return config. home_text;

}
}

nodul e. exports = { HonePage };

J/models/veterinarians.js

const config = require ("../config/config.json");
cl ass VetsPage {

constructor(page) {
t hi s. page = page;
}

async navigate() {
awai t this. page.goto(config.endpoint);

}

async get TopMenuEntry(){
return this.page.locator(config.vet_nmenu_entry).first();

}

async get Vet sText (){
return config.vet_text;

}
}

nodul e. exports = { VetsPage };

Plus a configuration file where we have the identifiers that will match the elements in the page, this will
add an extra abstraction layer to the tests allowing us to redefine locators or text without changing the
code.

config.json
{
"endpoint" : "https://xray-essentials-petclinic.herokuapp.conm ",
"owners_link" : "a[title=\"find owners\"]",
"top_nenu_entry" :"//*[@d=\"mai n-navbar\"]/ul/li[1]/a",
"vet _nenu_entry" : "//*[@d=\"mai n-navbar\"]/ul/li[3]/a",
"find_owners_button" : "a[title=\"find owners\"]",
"vet _text" : "Veterinarians",
"honme_text" : "Hone"
}

We added an helper file that will parse returned information and add valuable information returned by
Applitools Eyes to the Junit report.

helper.js
cl ass Hel per {
constructor() {
}
handl eTest Resul t s(sumary) {
let ex = summary. get Exception();

if (ex !=null) {
consol e.l og("Systemerror occurred while checking target.\n");

}
let result = summary. get Test Results();
if (result == null) {
console.log("No test results informati on available\n");
} else {

consol e.log("[Eyes URL| %] \\\\ AppNarme = % \\\\ testnane = %

\\\\ status = % \\\\ different = % \\\\ Browser = % \\\\ OS = % \\\\
viewport = %x%l \\\\ matched = % \\\\ nismatched = %l \\\\ nissing = %
d\\\\ aborted = %\\\\",

result.getUl (),

resul t. get AppNane(),

resul t. get Nane(),

resul t.get Status(),

result.getlsDifferent(),

resul t. get Host App(),

resul t. get Host OS(),

resul t. get Host Di spl aySi ze().getWdth(),

resul t. get Host Di spl aySi ze() . get Hei ght (),

resul t. get Mat ches(),

resul t.get M smat ches(),

resul t.get M ssing(),

(result.getlsAborted() ? "aborted" : "no"));

let steps = result.getStepslnfo();

steps. forEach(step => {

consol e.l og("StepNane = %, different = %\\\\", step.

get Nane(), step.getlsDifferent());

1)

}

}s
}

nodul e. exports = { Hel per };

The tests that validate if the features are behaving as expected are below, notice that we are using the
Applitools Eyes SDK and adding checks on the tests in the moments we want to have visual validations.

For the tutorial purpose we will focus in the Owners validations (the others will be similar with more or
less actions).

login.spec.ts

import { test, expect } from' @laywight/test';

import { OmnersPage } from"../nodel s/ owners";

inport { Helper } from"../nodels/hel per"

const { Eyes, d assicRunner, Target , Configuration, Batchlnfo,

Mat chLevel , Test Resul t Cont ai ner, TestResults} = require(' @pplitools/eyes-
pl aywight')

test.describe("Petdinic validations", () => {
l et eyes, runner;//, default_url;

test. beforeEach(async () => {

/1 Initialize the Runner for your test.
runner = new C assi cRunner ();

/Il Create Eyes object with the runner
eyes = new Eyes(runner);

/1 Initialize the eyes configuration
const configuration = new Configuration();

/1 create a new batch info instance and set it to the configuration
configuration.setBatch(new Batchlnfo('PetCinic Batch - Playwight -
Cassic'));

/1 Define the match |l evel we need for our tests
eyes. set Mat chLevel (Mat chLevel . Strict);

/Il Set the configuration to eyes
eyes. set Confi guration(configuration);

})s

test('Validate find owners link', async ({ page }) => {
const owner sPage = new Owner sPage(page) ;
awai t owner sPage. navi gate();
await eyes.open(page, 'Petdinic', 'FindOmersLink', { wdth: 800,
hei ght: 600 });
awai t owner sPage. click_find_owners_button();
awai t eyes. check(Target.w ndow().fully());
await eyes.close();

1)

test.afterEach(async () => {
const hel per = new Hel per();
/1 1f the test was aborted before eyes.close was called, ends the test
as aborted.
awai t eyes. abort();

/1 W pass false to this nethod to suppress the exception that is
throwmn if we

/1 find visual differences

const results = await runner.getAll Test Results(false);

results.getAll Results().forEach(result => {
hel per. handl eTest Resul ts(result);

IO N

1)
3]

Looking to this class in more details we can see different areas:

® test.beforeEach()
® test()

® test.afterEach()

In the "test.beforeEach" we are configuring the runner that will be used by the Eyes instance, as you can
see, we are using the classic one (Eyes have another available called "Visual Grid Runner" that interacts
with the Eyes Ultrafast Grid server to render the checkpoint images in the cloud).

We defined a configuration object that will hold the configuration for the instance, we are defining the
Batch named 'PetClinic Batch - Playwright - Classic', defining the match level (in our case we are using
the recommended one Strict but there are more available).

In the test itself we have a normal Playwright test with additions from the Applitools Eyes SDK, let's look
into those in more detail:

® await eyes.open(page, 'PetClinic', 'FindOwnersLink', { width: 800, height: 600 }); - to start a test,
before calling any of the check methods and we are defining the AppName, TestName and
ViewPortSize.

® await eyes.check(Target.window().fully()); - Run a checkpoint. Uses Fluent arguments to specify
the various parameters.

® await eyes.close(); - Call this method at the end of the test. This terminates the sequence of
checkpoints, and then waits synchronously for the test results and returns them.

Finally in the "test.afterEach" we make sure to close all eyes instances by calling the "abort" method and
process the results that are returned by the runner.

Once the code is implemented, we will run it to define the baseline (A baseline stores a sequence of
reference images), that will be used to compare to the next tests. We achieve that with the following
command:

APPLI TOOLS_API _KEY="API _KEY" PLAYWRI GHT_JUNI T_OUTPUT_NAME=r esul ts. xm npx
playwight test ./tests/* --browser=chromium--reporter=junit,line

1 Ifthe APPLITOOLS_API_KEY is not defined the tests will be executed but the screenshots
will not be sent to Applitools Eyes.

The output generated shows how many tests have been executed, produces a Junit report and returns
the link to check the visual assertions.

In Applitools Eyes interface we can see that a new application was created with 3 tests:

If we navigate to the test results we will see the three tests properly named, information about the OS,
Browser and Viewport used, a screenshot taken and the notion if is new or not and a date.

At this point we have generated our baseline and the tests are behaving as expected, we will now
introduce a change in the application and remove strings from the Owners test that will make the test to
succeed but the visual validation will fail as it will not match the baseline and thus failing the tests overall.

After the second execution the output terminal will have the following information:

https://applitools.com/docs/common/cmn-eyes-match-levels.html
https://applitools.com/docs/api/eyes-sdk/classes-gen/class_eyes/method-eyes-check-playwright-javascript.html

The report generated will contain the following information:

Junit Report

<testsuites id=
time="23.226">
<testsuite nanme="tests/hone.spec.ts" tinestanp="1639395430782" host nane=
tests="1" failures="0" skipped="0" time="14.955" errors="0">

<testcase nane="Petdinic validations Validate honme |ink" classnane="
[chromiun] > tests/hone.spec.ts:32:3 > Petdinic validations > Validate
home |ink" tinme="14.955">

<syst em out >

[Eyes URL| https://eyes. applitools.confapp/batches/00000251762905362858
/00000251762905362326?account | d=09A TwFAGKSWBd9i 1ZI DBg~~] \\ AppNane =
Petdinic \\ testname = HoneLink \\ status = Passed \\ different = fal se
\\ Browser = Chronme 97.0 \\ OS = Mac OS X 10.15 \\ viewport = 800x600 \\
matched = 1 \\ nmismatched = 0 \\ mssing = O\\ aborted = no\\

StepNane =, different = false\\

nanme= tests="3" failures="1" ski pped="0" errors="0"

</ syst em out >
</testcase>
</testsuite>
<testsuite name="tests/owners.spec.ts" tinmestanp="1639395430782"
host nane="" tests="1" failures="1" skipped="0" tinme="21.788" errors="0">
<testcase nanme="Petdinic validations Validate find owners |ink"
cl assname="[chrom un] > tests/owners.spec.ts:31:3 > Petdinic validations
> Validate find owners |ink" tine="21.788">
<failure nessage="owners.spec.ts:31:3 Validate find owners |ink" type="
FAI LURE" >
[chromiun] > tests/owners.spec.ts:31:3 > Petdinic validations »
Val idate find owners |ink =======

Error: Test 'FindOmersLink' of 'Petdinic' detected differences! See
details at: https://eyes. applitools.com app/batches/00000251762905361920
/00000251762905361545?account | d=09A TwFAGKSWBd9i 1ZI DBg~~

35 | awai t owner sPage. click_find_owners_button();
36 | await eyes. check(Target.w ndow().fully());
> 37 | awai t eyes. cl ose();
| N
38| })
39 |
40 | test.afterEach(async () => {

at Eyes.close (/Users/cristianocunha/ Docunents/ Projects
/ appl i t ool seyes/ node_nodul es/ @ppl i tool s/ eyes-api/dist/Eyes.|js:247:23)
at processTi cksAndRej ections (internal/process/task_queues.js:93:5)
at /Users/cristianocunha/ Docunent s/ Proj ects/applitool seyes/tests
/tests/owners. spec.ts:37:5
at Wor ker Runner. _runTest Wt hBef or eHooks (/Users/cri stianocunha
/ Documrent s/ Proj ect s/ appl i t ool seyes/ node_nodul es/ @I aywight/test/lib
/ wor ker Runner . js: 478: 7)

</failure>

<syst em out >

[Eyes URL| https://eyes. applitools.coniapp/batches/00000251762905361920
/00000251762905361545?account | d=09A TwFAGKSWBd9i 1ZI DBg~~] \\ AppName =
PetClinic \\ testname = FindOmersLink \\ status = Unresolved \\ different
= true \\ Browser = Chrome 97.0 \\ OS = Mac OS X 10.15 \\ viewport =
800x600 \\ matched = 0 \\ mismatched = 1 \\ nissing = 0\\ aborted = no\\
StepNane =, different = true\\

</ syst em out >

</testcase>

</testsuite>

<testsuite name="tests/veterinarians.spec.ts" tinestanp="1639395430782"
host name="" tests="1" failures="0" skipped="0" tinme="15.489" errors="0">
<testcase nanme="Petdinic validations Validate veterinarians |ink"

cl assname="[chronmiun] > tests/veterinarians.spec.ts:31:3 > PetCdinic

val idations > Validate veterinarians |ink" tinme="15.489">

<syst em out >

[Eyes URL| https://eyes. applitools.conlapp/batches/00000251762905363795
/00000251762905363202?account | d=09A_ TwWFAGKSWBd9i 1ZI DBg~~] \\ AppName =
PetClinic \\ testname = VetsLink \\ status = Passed \\ different = fal se
\\ Browser = Chronme 97.0 \\ OS = Mac OS X 10.15 \\ viewport = 800x600 \\
matched = 1 \\ mismatched = 0 \\ missing = O\\ aborted = no\\

StepNane = , different = false\\

</ syst em out >
</testcase>
</testsuite>
</testsuites>

When we access the link provided by Applitools Eyes we can see the visual changes detected:

oppitoor . ===

When accessing the details we can see the actual differences detected between the baseline and the
latest test side by side:

€ spring

€ spring ... € spring ...

Notes:

* Applitools will let you analyse further the problem by filtering the view in different layers.

* Applitools have available the possibility to define regions, regions to be ignore for example if the

content is too dynamic.
® Applitools let you add annotations, such as remarks or setting a bug.
® By default Playwright will execute tests for the 3 browser types available (that is why we are
forcing to execute only for one browser)
® By default all the tests will be executed in headless mode
® Folio command line will search and execute all tests in the format: "**/?(*.)+(spec|test).[jt]s"
® |n order to get the Junit test report please follow this section

Integrating with Xray

As we saw in the above example, where we are producing Junit reports with the result of the tests, it is
now a matter of importing those results to your Jira instance, this can be done by simply submitting
automation results to Xray through the REST API, by using one of the available CI/CD plugins (e.g. for
Jenkins) or using the Jira interface to do so.

https://github.com/microsoft/playwright-test/blob/master/README.md#export-junit-report

API

API

Once you have the report file available you can upload it to Xray through a request to the REST API
endpoint for JUnit, and for that the first step is to follow the instructions in v1 or v2 (depending on your
usage) to obtain the token we will be using in the subsequent requests.

JUnit XML results

We will use the API request with the definition of some common fields on the Test Execution, such as the
target project, project version, etc.

In the first version of the API, the authentication used a login and password (not the token that is used in
Cloud).

curl -H "Content-Type: nultipart/formdata" -u admin:adnmin -F
"file=@esults.xm " "http://<LOCAL_JI RA_|I NSTANCE>/rest/raven/ 1. 0/ i nport
/ execution/junit?proj ect Key=COWt est Pl anKey=COW 81'

With this command we are creating a new Test Execution in the referred Test Plan with a generic
summary and two tests with a summary based on the test name.

Gomicstore | COM-82
Execution results [1622475015055]

e~ ToDo InProgress Workflow v Admin v

Looking closer to the failed test, if we click on it to check details we will see that in the comment section
we have the details returned by the Applitools call, in there we find the link that will open the Applitools
application with the details of the visual validations. The definition is automatically filled up with an auto-
generated identifier that uniquely identifies the test and in the output section we have the stack trace
returned when we executed the test.

~ TestDetails gz

https://docs.getxray.app/display/XRAYCLOUD/Import+Execution+Results+-+REST#ImportExecutionResultsREST-JUnitXMLresults
https://docs.getxray.app/display/XRAYCLOUD/Import+Execution+Results+-+REST#ImportExecutionResultsREST-JUnitXMLresults
https://docs.getxray.app/display/XRAYCLOUD/Authentication+-+REST
https://docs.getxray.app/display/XRAYCLOUD/Authentication+-+REST+v2

Create a Test Execution for the test that you have

ComicStore / COM-86.
PetClinic validations Validate find owners link

#Edt QComment Assign Morev ToDo InProgress Workllow v Admin v

+ Detals
Type: @rest Status: (View Workton)
prorty: © Tivial Resoluton: Unresolved
Components: None
Labels: None

> Description

© TostDetalls.

Type: Generic

Definiion fehvomium] > ,

> Pre-Conditions

> TestSets

> Testpians

© TestRuns

Status start End

dependen)

Exploratory App
P b ~ DD-MM-YYYY HHMM | DD-MMYYYY HitM | X Clear

Fill in the necessary fields and press "Create"

Create new test execution to run COM-86

Project” [ComicStore 2
Summary® Ad-hoc execution for PetClinic validations Validate find owners link
Assignee Administrator
Chaose a user to assign the Test Exacution
Priority @ Blocker
Start typing to get a list of possible matches or press down 1o select.
Fix Version/s
Start typing to get a list of possible matches or press down 1o select.
Sprint
Start typing to get a list of possible matches or press down 1o select.

Test Environments

Start typing to get a list of possible matches or press down to select.

Each environment where the Test is to be executed
Revision
The system revision for the test execution

@ Execute Immediately

Open the Test Execution and import the JUnit report

Create

Cancel

7Y Comistore ¢ COM-91

Ad-hoc execution for PetClinic validations Validate find owners link

~ Detals Log work
e Drestesees g Status: R (View Workdlow)
riority: © Bocier Resoluton: Untesolved
Rark 0 Top
Companents: None
Labals: None Rak to Satiom
Test Plan: None Atach s
Test Environments: None
Voters
> Description Stop watching
Watchers
© Tests

Create sub-task
Convertto sub-task
Move

Link

clone
Labels

Delete

Tigger Tavis CI

e Reset Defect Count

Show[T00w]enties Columns -

Ao ey &

status

o comss

Showing 110 10 1entries

>

Fist Previous [l Next Last

~ Attachments

3 orop e o ttah,orbrowse.

Choose the results file and press "Import"

Import Execution Results

[Choose file | No file chosen]

The fila with the execution rasults for the Test Exacution

Import Cancel

The Test Execution is now updated with the test results imported

o)) comisiore £ covsn
. Ad-h ion for PetClinic

#Edt QComment Assin More v

Validate find link

ToDo ImProgress Workflow v Admin v

+ Detals
Type: 3 Test Exscution Staus: (Viow Worktion)
pricnty: © socier Resaluton: Unresolved
Componenis None
Labets: None
Test Pl None
TestEn None
> Description
“ Tests
[ERT——
2orss Teme
= ety
B reoyrank Show [0 W]enties Columns =
Rk ey Summany TostType #hea Dot Staus
o s COM-87 Patinc valdations Vldstovaternarian ok Genaric 0 o >
o comss paccinic eneic 0 o oy S
o 2 Comss patcinic e 0 ° [s] >

Showing 110 3of S enties

Fist provious [l Next Last

Tests implemented using Playwright will have a corresponding Test entity in Xray. Once results are
uploaded, Test issues corresponding to the Jest tests are auto-provisioned, unless they already exist

7y Comicstore 1 com-86
. PetClinic validations Validate find owners link

#Eat Qcomment

Assign More v

ToDo InProgress Workfiow v Admin v

< Details
Type: rest Status: (Viow Workfiow)
Priorty: © Tvial Resolution: Unresalved
Components: None
Labels: None

> Description

~ TestDetals
Type: Generic

[oetiton {chromium

> Pre-Conitions.

> TestSets

Xray uses a concatenation of the suite name and the test name as the the unique identifier for the test.

In Xray, results are stored in a Test Execution, usually a new one. The Test Execution contains a Test
Run per each test that was executed using playwright-test runner.

Detailed results, including logs and exceptions reported during execution of the test, can be seen on the
execution screen details of each Test Run, accessible through the Execution details:

Looking to the details of the failed test, we see that in the comment section we have the details returned
by the Applitools call. We can find the link that will open the Applitools application with the details of the
visual validations. The definition is automatically filled up with an auto-generated identifier that uniquely
identifies the test and in the output section we have the stack trace returned when we executed the test.

~ TestDetails gz

Tips

® after results are imported, in Jira Tests can be linked to existing requirements/user stories, so
you can track the impacts on their coverage.

® results from multiple builds can be linked to an existing Test Plan, to facilitate the analysis of
test result trends across builds.

® results can be associated with a Test Environment, in case you want to analyze coverage and
test results by that environment later on. A Test Environment can be a testing stage (e.g. dev,
staging, prepod, prod) or a identifier of the device/application used to interact with the system (e.
g. browser, mobile OS).

References

https://github.com/microsoft/playwright-test/blob/master/README.md
https://playwright.dev/
https://playwright.tech/blog/using-jest-with-playwright
https://applitools.com/docs/index.html
https://applitools.com/docs/topics/sdk/sdk.html

https://github.com/microsoft/playwright-test/blob/master/README.md
https://playwright.dev/
https://playwright.tech/blog/using-jest-with-playwright
https://applitools.com/docs/index.html
https://applitools.com/docs/topics/sdk/sdk.html

	Testing web applications using Applitools Eyes

