Testing web applications using Gwen and Selenium

® Overview
® Requirements
® Description
© Using Jira and Xray as master
© Using Git or other VCS as master
® References

Overview

In this tutorial, we will perform some web/Ul-based tests using Gwen.

Gwen uses the Given, When, Then syntax from Gherkin (thus, its name) to implement an interpretation engine that allows users to easily write "automated
tests" (i.e. automated scripts), whose steps will be executed implicitly by their corresponding code implementation. Thus, users can focus on writing
(executable) specifications without having to do all the implementation hard-work.

Gwen also separates declarative from imperative style Gherkin specifications. Declarative is done in standard .feature files that may include steps defined
in while imperative specifications (i.e. "meta-features") are managed in .meta files.

Gwen uses Selenium under the hood, by providing a DSL that allows users to interact with the browser without having to write code.

From the many interesting features of Gwen we can highlight the auto-update capability and also the ability taking screenshots, which will be available for
analysis after tests are run.

Requirements

® gwen
® gwen-web
® cucumber-json-merge
© npminstall -g cucunber-json-nerge

Description

We will use sample code from gwen-web repository, using some instructions available online.
Remember that we need to manage:

® features (declarative specifications, usually stored in .feature files)
* meta-features (imperative specifications, usually stored in .meta files)

Besides that, you need to decide is which workflow we'll use: do we want to use Xray/Jira as the master for writing the declarative specification or do we
want to manage those in Git?

@ Learn more

Please see Testing in BDD with Gherkin based frameworks (e.g. Cucumber) for an overview of the possible workflows.

Using Jira and Xray as master

This section assumes using Xray as master, i.e. the place that you'll be using to edit the specifications (e.g. the scenarios that are part of .feature files).

@ Please note

This tutorial explores using Xray for storing and managing the declarative scenarios and not the ones contained within the meta-features.

However, it should also be possible to manage them as Test issues with a "StepDef" label; it would require further evaluation though.

The first step is to create a Cucumber Test, of Cucumber Type "Scenario”, in Jira. The specification would be exactly the same as the one provided in the
original repository.

https://gwen-interpreter.github.io/
https://github.com/gwen-interpreter/gwen/wiki/Meta-Features
https://github.com/gwen-interpreter/gwen-web
https://gweninterpreter.wordpress.com/2017/12/18/gwen-workspaces/
https://docs.getxray.app/pages/viewpage.action?pageId=82470414

The test is quite self-explanatory, which is the ultimate purpose of using this approach: a browser is open, then we search by “Gwen automation” and then
we look at the first Google result.

Calculator / CALC-4823
Perform a google search

Test Details
Type: Cucumber Scenario Type: Scenario
Scenario: 1 Given I have Google in my browser

2 When I do a search for "Gwen automation"
3 Then the first result should open a Gwen page

Press ~ Ctrl + Space to get step suggestions.

Autocomplete based on labels: Filter Labels ~

£ o

After creating the Test in Jira and associating it with requirements, etc., you can export the specification of the test to a Cucumber .feature file via the
REST API, or the Export to Cucumber Ul action from within the Test/Test Execution issue or even based on an existing saved filter. A plugin for your ClI
tool of choice can be used to ease this task.

o Calculator / CALC-4823
Perform a google search

Edit () Comment Assign | More ~ Start Progress = Resolve Issue = Close Issue Admin ~

Details Log work
Type: B Test Agile Board Status: D (View Workflow)
Affects Version/s: None Rank to Top Resolution: Unresolved
Component/s: None Rank to Bottom Fix Version/s: None
Labels: None Attach files
Voters
Description Stop watching
Click to add description Watchers
Create sub-task
Test Details
Convert to sub-task
Type: Cucumber
Move
Scenario Type: Scenario Link
Scenario: Given I hay Clone r
When I do ¢ Labels -omation"
Then the fi Assess risk :n a Gwen page
Delete Z Edit Steps
Reset TestRunStatus

Pre-Conditions Export to Cucumber

The coverage and the test results can be tracked in the "requirement" side (e.g. user story).

Calculator / CALC-4805
Google search (gwen-web-demo)

Edit] Comment Assign More ~ Start Progress ~ Resolve Issue = Close Issue Admin ~
Details

Type: Story Status: D (View Workflow)

Priority: 2 Major Resolution: Unresolved

Affects Version/s: None Fix Version/s: None

Component/s: None

Labels: None

Requirement Status:

Description

Click to add description
Test Coverage +

Create Test Create Sub-Test Execution Link Tests

Version v v3.0 h All Environments ~

D Unresolved CALC-4823 Perform a google search

After being exported, the created .feature file will be similar to the original but will contain the references to the Test issue key and the covered requirement
issue key.

features/google.feature

@REQ _CALC- 4805
Feature: Googl e search (gwen-web-denp)

@EST_CALC- 4823
Scenario: Performa google search
G ven | have CGoogle in ny browser
Wen | do a search for "Gwaen automation”
Then the first result should open a Gaen page

The steps correspond to reusable blocks, defined as @StepDef scenarios within meta-feature files like the following one. This is the automation glue.

meta/google/Google.meta

Feature: Google search neta

@5t epDef

Scenario: | have Google in ny browser
Gven | start a new browser
Wien | navigate to "http://ww. googl e. cont
Then the page title should be "Google"

@t epDef

Scenario: | do a search for "<query>"
G ven the search field can be |ocated by nane "q"
When | enter "$<query>" in the search field
Then the page title should contain "$<query>"

@t epDef

Scenario: the first result should open a Gaen page
Gven the first match can be | ocated by css selector ".r > a"
Wien | click the first natch
Then the current URL should contain "gwen-interpreter”

In this example, we're assuming that this meta-feature is not imported to Xray nor managed there; thus, it will probably live in the VCS.

Besides the previous example, there are also additional tests for interacting with a demo page, with corresponding meta specification.

Gwen loads both standard and meta-features and finds the right code to execute.

After running the tests and generating the Cucumber JSON report (e.g., merged-test-results.json), it can be imported to Xray via the REST API or the Imp
ort Execution Results action within the Test Execution.

The cucumber-json-merge utility may be handy to merge the results of each feature.

./gwen -b -mneta -f json -r target/reports features

cucunber-json-nmerge -d target/reports/json/

curl -H "Content-Type: application/json" -X POST -u admin:admn --data @nerged-test-results.json"
http://jiraserver. exanpl e.comrest/raven/ 1. 0/inport/execution/cucunber

https://github.com/gwen-interpreter/gwen-web/blob/master/features/floodio/FloodIO.feature
https://github.com/gwen-interpreter/gwen-web/blob/master/features/floodio/FloodIO.meta
https://docs.getxray.app/download/attachments/82470834/merged-test-results.json?version=2&modificationDate=1670243168682&api=v2
https://github.com/bitcoder/cucumber-json-merge

Calculator / CALC-5152

Execution results [1572251627992]

Edit () Comment Assign | More v Close Issue = Reopen Issue Admin v
Details.

Type: [Test Execution

Affects Version/s: None

Component/s: None

Labels: None

Test Environments: None

Test Plan: None
Description

Execution results imported from external source

Tests

Overall Execution Status
I ———

8 PASS 1 FAIL

TOTAL TESTS: 9

Filter(s)
Apply Rank
Rank Key Summary Test Type

1 CALC-4823 Perform a google search Cucumber
2 CALC-4824 Initialise user agent Cucumber
3 CALC-4825 Launch the challenge Cucumber
4 CALC-4826 Complete step 1 Cucumber
5 CALC-4827 Complete step 2 Cucumber
6 CALC-4828 Complete step 3 Cucumber

Status: (=R (View Workflow)
Resolution: Fixed
Fix Version/s: None

Show 100¢ entries Columns v
#Req #Def Assignee 4 status
1 0 Administrator [FaL | >
1 0 Administrator [Pass | »
1 0 Administrator [Pass | »
1 0 Administrator [pass | »
1 0 Administrator [Pass | »
1 0 Administrator [pass | >

The execution screen details will provide information on the test run result that includes step-level information including duration.

Calculator / Test Execution: CALC-5152 / Test: CALC-4823

Import Execution Results Export to Cucumber _a Return to Test Execution Next p
Perform a google search -
tests
[CALC-4805 Google search (gwen-web-demo) A opEN
Test Details -
Test Type: Cucumber
Scenario Type: Scenario
Scenario 1 Given I have Google in my browser
2 When I do a search for "Gwen automation"
3 Then the first result should open a Gwen page
Results ~
Context Duration Status.
v -
Steps.
Given | have Google in my browser 1673.623 ms “
When | do a search for "Gwen automation” 4138371ms (S
“Then the first result should open a Gwen page ©@2) 1766212ms FAIL
Failed step [at line 19]: Then the current URL should contain "gwen-interpreter": assertion failed: Expected the current URL to contain 'gwen-interpreter' but got 'h' ss.com/"

(&2 evidence_siep_3_0png

&3 evidence.step_3_1.png

As shown above, besides a detailed error message, screenshots are also automatically available on failed steps.

On the “requirement”/user story side (i.e the “feature”) we can also see how this result impacting on the coverage.

Calculator / CALC-4805
Google search (gwen-web-demo)

Edit () Comment Assign = More ~ Start Progress =~ Resolve Issue Close Issue Admin ~

Details
Type: [2) Story Status: D (View Workflow)
Priority: A Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None

Requirement Status:

Description

Click to add description
Test Coverage 4
Version v None - latest execution = ~ All Environments ~ [NOK | ~—
EEE) Unresolved CALC-4823 Perform a google search — FAIL

If we wanted to correct the previous error, in this case, we would need to correct the meta-feature file containing the specification of the step “Then the first
result page should open a Gwen page” and run the tests again.

Calculator / Test Execution: CALC-5154 / Test: CALC-4823
Perform a goog le search] Import Execution Results. Export to Cucumber A Retumn to Test Execution Next)

TesUISSUe LInKS (1)

tests
[CALC-4805 Google search (gwen-web-demo)] OPEN
Test Details ~
Test Type: Cucumber
Scenario Type: Scenario
Scenario: 1 Given I have Google in my browser
2 When I do a search for "Gwen automation"
3 Then the first result should open a Gwen page
Results ~
Context Duration Status
v 10sec EEIINZEIID
Steps.
Given | have Google in my browser 6034.178ms NS
When | do a search for "Gwen automation" 2044482 ms (S
Then the first result should open a Gwen page 2800204 ms (D

Using Git or other VCS as master

You can edit your .feature and .meta files outside of Jira (eventually storing them in your VCS using Git, for example).

In any case, you'll need to synchronize your .feature files to Jira so that you can have visibility of them and report results against them.

Thus, you need to import your .feature files to Xray/Jira; you can invoke the REST API directly or use one of the available plugins/tutorials for CI tools.

zip -r features.zip features/ -i *.feature
curl -H "Content-Type: nultipart/formdata” -u admn:adnmin -F "file=@eatures.zip" "http://jiraserver.exanple.
conlrest/raven/ 1. 0/i nport/feature?proj ect Key=CALC'

G) Please note

Each Scenario of each .feature will be created as a Test issue that contains unique identifiers, so that if you import once again then Xray can
update the existent Test and don't create any duplicated tests.

Afterward, you can export those features out of Jira based on some criteria, so they are properly tagged, run them and import back the results to correct
entities in Xray.

References

https://gwen-interpreter.github.io/
https://github.com/gwen-interpreter/gwen
https://github.com/gwen-interpreter/gwen-web
https://gweninterpreter.wordpress.com/

Testing in BDD with Gherkin based frameworks (e.g. Cucumber)
https://github.com/bitcoder/cucumber-json-merge

Automated Tests (Import/Export)

Exporting Cucumber Tests - REST

https://gwen-interpreter.github.io/
https://github.com/gwen-interpreter/gwen
https://github.com/gwen-interpreter/gwen-web
https://gweninterpreter.wordpress.com/
https://docs.getxray.app/pages/viewpage.action?pageId=82470414
https://github.com/bitcoder/cucumber-json-merge
https://docs.getxray.app/pages/viewpage.action?pageId=82469185
https://docs.getxray.app/display/XRAY620/Exporting+Cucumber+Tests+-+REST

	Testing web applications using Gwen and Selenium

