
Testing APIs using Karate DSL

Overview
Karate is an open-source tool to combine API test-automation, mocks, performance and UI automation in
one framework. The BDD syntax popularized by Cucumber is language-neutral, and accessible for non-
programmers. Assertions and HTML reports are built-in, and you can run tests in parallel.

Prerequisites

For this example we will useKarate DSL, that has available a Maven archetype that will build the skeleton
of the project.

The Karate Maven archetype will create the pom.xml, recommended directory structure, sample test
and JUnit 5 runner.

 We will need:

Access to a that we aim to testdemo site
Maven environment with JUnit 5

To start using Karate DSL please follow the documentation.Get Started

The test consists in validating the listing operation of the API from the and a second one to demo site
create and fetch the created user to validate the success.

By default we see 5 files being created, one that will hold the logging configurations, called logback-test.
 xml

What you'll learn

Define tests using Karate DSL
Run the test and push the test report to Xray
Validate in Jira that the test results are available

Source-code for this tutorial

code is available in GitHub

Overview
Prerequisites
Integrating with Xray

API
JUnit XML results

Jira UI
Tips
References

https://github.com/microsoft/playwright-test/blob/master/README.md
https://github.com/karatelabs/karate#junit-5
http://dummy.restapiexample.com/
https://github.com/karatelabs/karate#junit-5
https://github.com/karatelabs/karate#maven
http://dummy.restapiexample.com/
https://github.com/Xray-App/tutorial-java-karate

logback-test.xml

<?xml version="1.0" encoding="UTF-8"?>
<configuration>

 <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
 <encoder>
 <pattern>%d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %
msg%n</pattern>
 </encoder>
 </appender>

 <appender name="FILE" class="ch.qos.logback.core.FileAppender">
 <file>target/karate.log</file>
 <encoder>
 <pattern>%d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %
msg%n</pattern>
 </encoder>
 </appender>

 <logger name="com.intuit" level="DEBUG"/>

 <root level="info">
 <appender-ref ref="STDOUT" />
 <appender-ref ref="FILE" />
 </root>

</configuration>

A second file that will have the Karate configurations regarding the environments, it will (karate-config.js)
allow the definitions of variables per environment or to define actions to be executed in different
environments:

karate-config.js

function fn() {
 var env = karate.env; // get system property 'karate.env'
 karate.log('karate.env system property was:', env);
 if (!env) {
 env = 'dev';
 }
 var config = {
 env: env,
 myVarName: 'someValue'
 }
 if (env == 'dev') {
 // customize
 // e.g. config.foo = 'bar';
 } else if (env == 'e2e') {
 // customize
 }
 return config;
}

For this example we will not change the above files. We still have 3 other files that were created, one
called that is a special Java class that will allow the execution in parallel of the tests ExamplesTest.java
defined in Karate (you can find more information). In this class we have added a method here .outputJuni

in the runner to enable the Junit report to be generated in the output.tXml(true)

The final version of the class is below.

https://github.com/karatelabs/karate#junit-5-parallel-execution

ExamplesTest.java

package examples;

import com.intuit.karate.Results;
import com.intuit.karate.Runner;
import static org.junit.jupiter.api.Assertions.*;
import org.junit.jupiter.api.Test;

class ExamplesTest {

 @Test
 void testParallel() {
 Results results = Runner.path("classpath:examples")
 .outputJunitXml(true)
 .parallel(2);
 assertEquals(0, results.getFailCount(), results.
getErrorMessages());
 }

}

Karate supports JUnit 5 and the advantage is that you can have multiple methods in a test-class. Notice
that in the below class we use the tag that will identify this method as a test. @Karate.Test

In here we are defining what is the test case we want to execute, in this case we are saying that we want
to execute the feature."DummyUsers"

DummyUsersRunner.java

package examples.users;

import com.intuit.karate.junit5.Karate;

class DummyUsersRunner {

 @Karate.Test
 Karate testDummyUsers() {
 return Karate.run("DummyUsers").relativeTo(getClass());
 }

}

The final file is the feature file where the tests are defined, although it as similarities with Cucumber, you
will see that there is a staggering difference, in this case there is no code behind that you need to define,
the notation defined here will be handled directly by Karate. Notice that Json is supported by default and
there are some keywords that will trigger actions, check the Karate documentation for more information.

For our example we have defined two scenarios, one to get all dummy users and then fetch the first user
by id and another that will create a user and fetch it to validate its creation.

dummyusers.feature

Feature: sample karate test script

 Background:
 * url 'http://dummy.restapiexample.com/api/v1/'

 Scenario: get all dummy users and then get the first user by id
 Given path 'employees'
 When method get
 Then status 200

 * def first = response.data[0]

 Given path 'employee', first.id
 When method get
 Then status 200

 Scenario: create a dummy user and then get it by id
 * def user =
 """
 {
 "name": "Karate Test User",
 "salary": "3000",
 "age": "35",
 }
 """

 Given path 'create'
 And request user
 When method post
 Then status 200

 * def id = response.data.id
 * print 'created id is: ', id

 Given path 'employee',id
 When method get
 Then status 200
 And match response contains {status:success}

Let us go over some specificities of the above code to make it more clear.

First notice that we are using Gherkin language with extra definitions, we have a with two Feature Scenari
, one common to both Scenarios, where we have defined the default url to be used.os Background

In the scenarios we are using Gherkin language (using the Given-When-Then keywords) and, as Gherkin
supports , each time you want to use a script inline prefix it with '*'. catch-all symbol ' '*

In the first scenario we are performing a from the default url (defined in the background) plus what is GET
defined in the and validating that we receive a HTTP 200. Then we extract from the response the path
first entry of the data element and save it in a variable first.

Still in the same test we are performing the last , now to the url plus ' ' adding the HTTP GET employee
value of the variable in the query string and validating that we get an .first HTTP 200

The second scenario is a little more complicated as we are performing a request with a user object POST
in the and then extracting the user id to perform a with it and check if the user was created BODY GET
with success.

Once the code is implemented it can be executed with the following command, that will execute all tests
present:

mvn test

https://www.relishapp.com/cucumber/cucumber/docs/gherkin/using-star-notation-instead-of-given-when-then

If you need to filter the execution in the command line you can use some filters, as you can see we are
defining that we will look into Karate tags and skip the tests with the tag. We are also defining @skipme
that we will use the runner (Junit5 parallel executor) but only for tests in the ExamplesTest dummyusers.

 as we can see below:feature

mvn test "-Dkarate.options=--tags ~@skipme classpath:examples/DummyUsers
/dummyusers.feature" -Dtest=ExamplesTest

The results are immediately available in the terminal

Karate also generates an HTML report that have detailed information on the tests results as we can
below:

 In this example the correspondent Junit report is as below:

Junit Report

<testsuite failures="0" name="examples/DummyUsers/dummyusers.feature"
skipped="0" tests="2" time="4.30768"><testcase classname="examples.
DummyUsers.dummyusers" name="[1:6] get all dummy users and then get the
first user by id" time="3.102637"><system-out>* url 'http://dummy.
restapiexample.com/api/v1/' passed
Given path 'employees'
.. passed
When method get
... passed
Then status 200
... passed
* def first = response.data[0]
.. passed
Given path 'employee', first.id
... passed
When method get
... passed
Then status 200
... passed
</system-out></testcase>
<testcase classname="examples.DummyUsers.dummyusers" name="[2:17] create a
dummy user and then get it by id" time="1.205043"><system-out>* url
'http://dummy.restapiexample.com/api/v1/'
passed
* def user =
.. passed
Given url 'http://dummy.restapiexample.com/api/v1/create'
................. passed
And request user
.. passed
When method post
.. passed
Then status 200
... passed
* def id = response.data.id
... passed
* print 'created id is: ', id
... passed
Given path id
... passed
</system-out></testcase>
</testsuite>

If you have more than one feature file there will be one Junit report per feature file.

Notice that the Junit report generated with Karate joins, in the name of the testcase, the order of the
scenario and line: "[1:6]" concatenated with the testcase name. In Xray we are using the testcase
path+name to uniquely identify the test each time the result is uploaded, in this case if the line changes
(due to some edition of the file thus changing the line of the code) Xray will create a new test (with this
new name) instead of uploading the results to the previously created one.

A new version of Karate is about to be released where the testcase name will not have the
order of the scenario and line.

A release candidate with the change is already available for you to experiment: https://search.
.maven.org/artifact/com.intuit.karate/karate-core/1.2.0.RC4/jar

With the next official release the next step will not be needed and can be skipped.

https://search.maven.org/artifact/com.intuit.karate/karate-core/1.2.0.RC4/jar
https://search.maven.org/artifact/com.intuit.karate/karate-core/1.2.0.RC4/jar

We advise you to use the tool available in to remove the https://github.com/bitcoder/junit-processor
characters from the testcase name, this tool have a patch exactly to remove that from the Junit report
generated. To use it you just have to tun the following command:

junit-processor -p 1 examples.DummyUsers.dummyusers.xml

This will produce a new file called "junit-new.xml" that you can use to upload to Xray.

Integrating with Xray
As we saw in the above example, where we are producing a Junit report with the result of the tests, we
need to import those results to your Jira instance, this can be done by simply submitting automation
results to Xray through the REST API, by using one of the available CI/CD plugins (e.g. for Jenkins) or
using the Jira interface to do so.

API

API

Once you have the report file available you can upload it to Xray through a request to the REST API
.endpoint for JUnit

JUnit XML results

We will do a request to the API with the definition of some common fields on the Test Execution, such as
the target project, test plan, etc.

curl -H "Content-Type: multipart/form-data" -u USERNAME:USER_PASSWORD -F
"file=@junit-new.xml" http://yourserver/rest/raven/1.0/import/execution
/junit?projectKey=COM&testPlanKey=COM-104

With this command we are creating a new Test Execution in the referred Test Plan with a generic
summary and two tests with a summary based on the test name.

https://github.com/bitcoder/junit-processor
https://docs.getxray.app/display/XRAY620/Import+Execution+Results+-+REST
https://docs.getxray.app/display/XRAY620/Import+Execution+Results+-+REST

3

2

1

Jira UI

Jira UI

Create a Test Execution for the tests that you have

Fill in the necessary fields and press " "Create

Open the Test Execution and import the JUnit report

5

4
Choose the results file and press "Import"

The Test Execution is now updated with the test results imported

Tests implemented will have a corresponding Test entity in Xray. Once results are uploaded, Test issues
corresponding to the tests are auto-provisioned, unless they already exist.

Xray uses a concatenation of the suite name and the test name as the the unique identifier for the test.

In Xray, results are stored in a Test Execution, usually a new one. The Test Execution contains a Test
Run per each test that was executed using playwright-test runner.

Detailed results, including logs and exceptions reported during execution of the test, can be seen on the
execution screen details of each Test Run, accessible through the :Execution details

As we can see here:

Tips
after results are imported, in Jira Tests can be linked to existing requirements/user stories, so
you can track the impacts on their coverage.
results from multiple builds can be linked to an existing Test Plan, to facilitate the analysis of
test result trends across builds.
results can be associated with a Test Environment, in case you want to analyze coverage and
test results per environment later on. A Test Environment can be a testing stage (e.g. dev,
staging, pre-prod, prod) or an identifier of the device/application used to interact with the system
(e.g. browser, mobile OS).

References
https://karatelabs.github.io/karate/
https://github.com/karatelabs/karate
http://dummy.restapiexample.com/
https://github.com/bitcoder/junit-processor

https://karatelabs.github.io/karate/
https://github.com/karatelabs/karate
http://dummy.restapiexample.com/
https://github.com/bitcoder/junit-processor

	Testing APIs using Karate DSL

