
Testing Node.js apps using Cucumber.js in JavaScript

Overview
Requirements
Description

Using Jira and Xray as master
References

Overview
In this tutorial, we will create tests for Node.js, in JavaScript, with Cucumber.js.

The test (specification) is initially created in Jira as a Cucumber Test and afterwards, it is exported using the UI or the REST API.

Requirements
nodejs
npm packages

cucumber

Description
For the purpose of this tutorial, we'll use a simple JavaScript class implementing a very basic calculator.

lib/calculator.js

class Calculator {

 constructor(x, y) {
 this.x = x;
 this.y = y;
 }

 add() {
 this.result = this.x + this.y;
 }

 getResult() {
 return this.result;
 }
}

module.exports = Calculator;

We aim to test the sum operation.

However, before moving into the actual implementation, you need to decide which workflow to use: do you want to use Xray/Jira as the master for writing
the declarative specification, or do you want to manage those in Git?

This tutorial only showcases how to use Xray/Jira as the master for editing the Cucumber Scenarios/Scenario Outlines.

Using Jira and Xray as master

Learn more

Please see for an overview of the possible workflows.Testing in BDD with Gherkin based frameworks (e.g. Cucumber)

https://docs.getxray.app/pages/viewpage.action?pageId=97650410

1.

2.
3.
4.
5.
6.

This section assumes using Xray as master, i.e. the place that you'll be using to edit the specifications (e.g. the scenarios that are part of .feature files).

The overall flow would be something like this:

create Scenario/Scenario Outline as a Test in Jira; usually, it would be linked to an existing "requirement"/Story (i.e. created from the respective
issue screen)
implement the code related to Gherkin statements/steps and store it in Git, for example
generate .feature files based on the specification made in Jira
checkout the code from Git
run the tests in the CI
import the results back to Jira

Usually, you would start by having a Story, or similar (e.g. "requirement"), to describe the behavior of a certain feature and use that to drive your testing.

If you have it, then you can just use the "Create Test" on that issue to create the Scenario/Scenario Outline and have it automatically linked back to the
Story/"requirement."

Otherwise, you can create the Test using the standard (issue) Create action from Jira's top menu.

In this case, we'll create a Cucumber Test, of Cucumber Type "Scenario."

We can fill out the Gherkin statements immediately on the Jira issue create dialog or we can create the Test issue first and fill out the details on the next
screen, from within the Test issue. In the latter case, we can take advantage of the built-in Gherkin editor which provides auto-complete of Gherkin steps.

After the Test is created it will impact the coverage of related "requirement," if any.

The coverage and the test results can be tracked in the "requirement" side (e.g. user story). In this case, it changed from being UNCOVERED to NOTRUN
(i.e. covered and with at least one test not run).

The related statement's code is managed outside of Jira and stored in Git, for example.

features/step_definitions/addition_steps.js

const assert = require('assert')
const {Before, Given, When, Then} = require('cucumber');
const Calculator = require('../../lib/calculator');

let calculator;

Given('the numbers {int} and {int}', function (x, y) {
 calculator = new Calculator(x, y);
});

When('they are added together', function () {
 calculator.add();
});

Then('should the result be {int}', function (expected) {
 assert.equal(calculator.getResult(), expected)
});

You can then export the specification of the test to a Cucumber .feature file via the REST API, or the UI action from within the TestExport to Cucumber
/Test Execution issue or even based on an existing saved filter. A plugin for your CI tool of choice can be used to ease this task.

So, you can either:

use the UI

use the REST API (more info)here

https://docs.getxray.app/display/XRAY630/Exporting+Cucumber+Tests+-+REST

example of a Bash script to export/generate the features from Xray

#!/bin/bash

curl -u admin:admin "http://jiraserver.example.com/rest/raven/1.0/export/test?keys=CALC-
4763&fz=true" -o features.zip
rm -f features/*.feature
unzip -o features.zip -d features

use one of the available CI/CD plugins (e.g. see an example of)Integration with Jenkins

After being exported, the created .feature(s) will contain references to the Test issue key and the covered "requirement" issue key, if that's the case. The
naming of these files is detailed in .Export Cucumber Features

 (features/1_CALC-7895.feature)new feature after export

@REQ_CALC-7895
Feature: As a user, I can calculate the sum of 2 numbers

 # Addition is great as a verification exercise to get the Cucumber-js infrastructure up and running
 @TEST_CALC-4763 @features/addition.feature
 Scenario: Add two number
 Given the numbers 2 and 3
 When they are added together
 Then should the result be 5

To run the tests and produce a Cucumber JSON report, we can use the binary. cucumber-js

./node_modules/cucumber/bin/cucumber-js -f json:report.json

After running the tests, results can be imported to Xray via the REST API, the action within the Test Execution, or by using one Import Execution Results
of the available CI/CD plugins (e.g. see an example of).Integration with Jenkins

curl -H "Content-Type: application/json" -X POST -u admin:admin --data @"report.json" http://jiraserver.example.
com/rest/raven/1.0/import/execution/cucumber

1.
2.

Which Cucumber endpoint/"format" to use?

To import results, you can use two different endpoints/"formats" (endpoints described in):Import Execution Results - REST

the "standard cucumber" endpoint
the "multipart cucumber" endpoint

The standard cucumber endpoint (i.e. is simpler but more restrictive: you cannot specify values for custom fields /import/execution/cucumber)
on the Test Execution that will be created. This endpoint creates new Test Execution issues unless the Feature contains a tag having an issue
key of an existing Test Execution.

The multipart cucumber endpoint will allow you to customize fields (e.g. Fix Version, Test Plan) if you wish to do so on the Test Execution that
will be created. Note that this endpoint always creates new Test Executions (as of Xray v4.2).

In sum, if you want to customize the Fix Version, Test Plan and/or Test Environment of the Test Execution issue that will be created, you'll have
to use the "multipart cucumber" endpoint.

https://docs.getxray.app/display/XRAY630/Integration+with+Jenkins
https://docs.getxray.app/display/XRAY630/Export+Cucumber+Features
https://docs.getxray.app/display/XRAY630/Integration+with+Jenkins
https://docs.getxray.app/display/XRAY630/Import+Execution+Results+-+REST

A new Test Execution will be created (unless you originally exported the Scenarios/Scenario Outlines from a Test Execution).

The execution screen details of the Test Run will provide overall status information and Gherkin statement-level results.

Results are reflected on the covered item (e.g. Story). On the issue screen, coverage now shows that the item is OK based on the latest testing results,
that can also be tracked within the Test Coverage panel bellow.

References
https://github.com/cucumber/cucumber-js
Testing in BDD with Gherkin based frameworks (e.g. Cucumber)
Automated Tests (Import/Export)
Exporting Cucumber Tests - REST

https://github.com/cucumber/cucumber-js
https://docs.getxray.app/pages/viewpage.action?pageId=97650410
https://docs.getxray.app/pages/viewpage.action?pageId=97649551
https://docs.getxray.app/display/XRAY630/Exporting+Cucumber+Tests+-+REST

	Testing Node.js apps using Cucumber.js in JavaScript

