Testing Node.js apps using Cucumber.js in JavaScript

® Overview
® Requirements
® Description
© Using Jira and Xray as master
* References

Overview

In this tutorial, we will create tests for Node.js, in JavaScript, with Cucumber.js.

The test (specification) is initially created in Jira as a Cucumber Test and afterwards, it is exported using the Ul or the REST API.

Requirements

® nodejs
® npm packages
© cucumber

Description

For the purpose of this tutorial, we'll use a simple JavaScript class implementing a very basic calculator.

lib/calculator.js

class Calculator {

constructor(x, y) {
this.x = x;

this.y =vy;
}
add() {

this.result = this.x + this.y;
}

getResult () {
return this.result;
}
}

nodul e. exports = Cal cul ator;

We aim to test the sum operation.

However, before moving into the actual implementation, you need to decide which workflow to use: do you want to use Xray/Jira as the master for writing
the declarative specification, or do you want to manage those in Git?

This tutorial only showcases how to use Xray/Jira as the master for editing the Cucumber Scenarios/Scenario Outlines.

@ Learn more

Please see Testing in BDD with Gherkin based frameworks (e.g. Cucumber) for an overview of the possible workflows.

Using Jira and Xray as master

https://docs.getxray.app/pages/viewpage.action?pageId=97650410

This section assumes using Xray as master, i.e. the place that you'll be using to edit the specifications (e.g. the scenarios that are part of .feature files).
The overall flow would be something like this:

1. create Scenario/Scenario Outline as a Test in Jira; usually, it would be linked to an existing "requirement"/Story (i.e. created from the respective
issue screen)

. implement the code related to Gherkin statements/steps and store it in Git, for example

. generate .feature files based on the specification made in Jira

. checkout the code from Git

. run the tests in the ClI

. import the results back to Jira

O WN

Usually, you would start by having a Story, or similar (e.g. "requirement”), to describe the behavior of a certain feature and use that to drive your testing.

If you have it, then you can just use the "Create Test" on that issue to create the Scenario/Scenario Outline and have it automatically linked back to the
Story/"requirement."”

Otherwise, you can create the Test using the standard (issue) Create action from Jira's top menu.

Projects v Issues v Boards v Structure v Power Apps DbConsole eazyBl Tests v Create

Calculator / CALC-7895
As a user, | can calculate the sum of 2 numbers

Edit Q Comment Assign More v Start Progress Close Issue Admin v
v Details
Type: & story Status: D (view Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None

<

Description

As a user, | can calculate the sum of 2 numbers

<

Test Coverage

| Create Sub-Test Execution

No Tests were found testing the requirement.

In this case, we'll create a Cucumber Test, of Cucumber Type "Scenario."

We can fill out the Gherkin statements immediately on the Jira issue create dialog or we can create the Test issue first and fill out the details on the next
screen, from within the Test issue. In the latter case, we can take advantage of the built-in Gherkin editor which provides auto-complete of Gherkin steps.

Calculator / CALC-4763
Add two number

2 When they are added together
3 Then should the result be 5

Test Details
Type: Cucumber Scenario Type: Scenario
Scenario: 1 Given the numbers 2 and 3

After the Test is created it will impact the coverage of related "requirement,” if any.

The coverage and the test results can be tracked in the "requirement" side (e.g. user story). In this case, it changed from being UNCOVERED to NOTRUN

(i.e. covered and with at least one test not run).

Calculator / CALC-7895
As a user, | can calculate the sum of 2 numbers

Edit Q Comment Assign More v Start Progress Close Issue

v Details

Type: [story

Priority: Z Major

Affects Version/s: None

Component/s: None

Labels: None

Requirement Status: ——
v Description

As a user, | can calculate the sum of 2 numbers

v Test Coverage

TEST COVERAGE FOR THE FOLLOWING ANALYSIS SCOPE

Admin v

Status:
Resolution:

Fix Version/s:

Scope: Version; Version: None - latest execution; Environment: All Environments ~

The related statement's code is managed outside of Jira and stored in Git, for example.

EIED (view Workflow)
Unresolved

None

Create Test Create Sub-Test Execution

features/step_definitions/addition_steps.js

const assert = require('assert')
const {Before, G ven, Wen, Then} = require('cucunber');
const Calculator = require('../../lib/calculator');

let calculator;

G ven('the nunmbers {int} and {int}', function (x, y) {
cal cul ator = new Cal culator(x, y);

1)

Wien(' they are added together', function () {
cal cul ator. add();

1)

Then(' should the result be {int}', function (expected) {
assert.equal (cal cul ator. getResult(), expected)

1)

You can then export the specification of the test to a Cucumber .feature file via the REST API, or the Export to Cucumber Ul action from within the Test
[Test Execution issue or even based on an existing saved filter. A plugin for your CI tool of choice can be used to ease this task.

So, you can either:

® use the Ul
Calculator / CALC-4763
Add two number
Edit Q Comment Assign m Start Progress Resolve Issue Close Issue
v Details Log work
Type: B Test Agile Board Status
Affects Version/s: None Resolu
Rank to Top
Component/s: None Fix Vel
Labels: features/add Rank to Bottom
Attach files
v Description
P e Voters | 1 .
Addition is great as a verification exe js infrastructure up and running
Stop watching
v Test Details Watchers
Type: Cucumber (create sub-task
Scenario Type: Scenario Convert to sub-task
Scenario: Given the r Move
When they ¢
Then shoulc LNk
Clone
Labels
> Pre-Conditions Delete
Trigger Jenkins job
v Test Sets
. . . . Trigger Jenkins job an...
This test is not associated with Test
Reset TestRunStatus
Export to Cucumber
v TestPlans
Export Test to XML
Export Test Runs to CSV
[e]

(="

® use the REST API (more info here)

https://docs.getxray.app/display/XRAY630/Exporting+Cucumber+Tests+-+REST

o example of a Bash script to export/generate the features from Xray
#!/ bi n/ bash

curl -u admin:adnmin "http://jiraserver.exanple.comrest/raven/ 1.0/ export/test?keys=CALC
4763&f z=true" -o features.zip

rm-f features/*.feature

unzip -o features.zip -d features

® use one of the available CI/CD plugins (e.g. see an example of Integration with Jenkins)

After being exported, the created .feature(s) will contain references to the Test issue key and the covered "requirement” issue key, if that's the case. The
naming of these files is detailed in Export Cucumber Features.

new feature after export (features/1_CALC-7895.feature)

@REQ _CALC- 7895
Feature: As a user, | can calculate the sumof 2 nunbers

Addition is great as a verification exercise to get the Cucunber-js infrastructure up and running
@EST_CALC-4763 @eatures/addition.feature
Scenario: Add two nunber

G ven the nunbers 2 and 3

Wien they are added toget her

Then should the result be 5

To run the tests and produce a Cucumber JSON report, we can use the cucunber -j s binary.

./ node_nodul es/ cucunber/ bi n/ cucunber-js -f json:report.json

After running the tests, results can be imported to Xray via the REST API, the Import Execution Results action within the Test Execution, or by using one
of the available CI/CD plugins (e.g. see an example of Integration with Jenkins).

curl -H "Content-Type: application/json" -X POST -u admin:admn --data @report.json" http://jiraserver.exanple.
com rest/raven/ 1. 0/inport/execution/cucunber

@ Which Cucumber endpoint/"format” to use?
To import results, you can use two different endpoints/“formats" (endpoints described in Import Execution Results - REST):

1. the "standard cucumber" endpoint
2. the "multipart cucumber" endpoint

The standard cucumber endpoint (i.e. /import/execution/cucumber) is simpler but more restrictive: you cannot specify values for custom fields
on the Test Execution that will be created. This endpoint creates new Test Execution issues unless the Feature contains a tag having an issue
key of an existing Test Execution.

The multipart cucumber endpoint will allow you to customize fields (e.g. Fix Version, Test Plan) if you wish to do so on the Test Execution that
will be created. Note that this endpoint always creates new Test Executions (as of Xray v4.2).

In sum, if you want to customize the Fix Version, Test Plan and/or Test Environment of the Test Execution issue that will be created, you'll have
to use the "multipart cucumber" endpoint.

https://docs.getxray.app/display/XRAY630/Integration+with+Jenkins
https://docs.getxray.app/display/XRAY630/Export+Cucumber+Features
https://docs.getxray.app/display/XRAY630/Integration+with+Jenkins
https://docs.getxray.app/display/XRAY630/Import+Execution+Results+-+REST

A new Test Execution will be created (unless you originally exported the Scenarios/Scenario Outlines from a Test Execution).

v

<

<

/ CALC-7896
Execution results [1604329653335]

Edit Q Comment Assign More v Start Progress Resolve Issue Close Issue Admin v
Details
Type: 3 Test Execution Status: D (View Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None
Test Environments: None
Test Plan: None
Description
Click to add description
Tests
+ Add v
Overall Execution Status
1 PASS
Total Tests: 1
= Filter(s)
Show entries Columns ~
4 Rank Key Summary Test Type #Req #Def Assignee Status
(m] 1 CALC-4763 Add two number Cucumber 1 0 Administrator [pass] »

Showing 1to 1 of 1 entries

First Previous . Next Last

The execution screen details of the Test Run will provide overall status information and Gherkin statement-level results.

v Tests

Overall Execution Status

View on Board

1 PASS

Total Tests: 1

= Filter(s)

4 Rank Key Summary
(m] 1 CALC-4763 Add two number

Showing 1to 1 of 1 entries

v Attachments

Calculator / Test Execution: CALC-7896 / Test: CALC-4763
Add two number

tests

Test Type #Req #Def

Cucumber 1 0

G} Drop files to attach, or browse.

Assignee

Administrator

entries Columns ~

Status

First Previous [ill Next & Execution Details —

EXECUTE INLINE

TODO

FAIL

@ Import Execution Results Export to Cucumber Return to Test Executior

[cALC-7895 As auser, | can calculate the sum of 2 numbers a OPEN
Custom Fields A~
There are no Test Run Custom Fields defined.
Test Details -~
Test Type: Cucumber
Scenario Type: Scenario
Scenario: 1 Given the numbers 2 and 3
2 When they are added together
3 Then should the result be 5
Results A
Context Duration Status
v - 1o00ms (ENZECIID
Steps
Given the numbers 2 and 3 1000ms (TS
When they are added together - T
Then should the result be 5 - T

Results are reflected on the covered item (e.g. Story). On the issue screen, coverage now shows that the item is OK based on the latest testing results,
that can also be tracked within the Test Coverage panel bellow.

Calculator / CALC-7895
As a user, | can calculate the sum of 2 numbers

Edit Q Comment Assign More v Start Progress Resolve Issue Close Issue Admin v
v Details
Type: &) story Status: CED (view Workflow)
Priority: 2 Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None

<

Description

As a user, | can calculate the sum of 2 numbers

v Test Coverage
Create Test Create Sub-Test Execution

TEST COVERAGE FOR THE FOLLOWING ANALYSIS SCOPE

Scope: Version; Version: None - latest execution; Environment: All Environments ~ [ok |

= Filter(s)

Show entries Columns ~

P Status Resolution 4 Key Summary Test Runs Test Status
0 OPEN Unresolved CALC-4763 Add two number 0 [pass |
Showing 1 to 1 of 1 entries First Previous I Next Last

References

https://github.com/cucumber/cucumber-js

Testing in BDD with Gherkin based frameworks (e.g. Cucumber)
Automated Tests (Import/Export)

Exporting Cucumber Tests - REST

https://github.com/cucumber/cucumber-js
https://docs.getxray.app/pages/viewpage.action?pageId=97650410
https://docs.getxray.app/pages/viewpage.action?pageId=97649551
https://docs.getxray.app/display/XRAY630/Exporting+Cucumber+Tests+-+REST

	Testing Node.js apps using Cucumber.js in JavaScript

