
1.

2.

3.

a.
b.

Testing using SpecFlow and Gherkin scenarios in C#

Overview
Usage scenarios
Example

Requirements
Using Jira and Xray as master

Step-by-step
Using Git or other VCS as master

FAQ and Recommendations
References

Overview
In this tutorial, we will create some test scenarios in SpecFlow using C#.

Similarly to Cucumber, SpecFlow is mainly a collaboration framework used in BDD context in order to improve shared understanding within the team,
usually during "3 Amigos" sessions. That's its main fit.

However, some teams use it in other contexts (e.g. after sofware has being built) for implementing automated tests and take advantage of Gherkin syntax
to have visibility/abstraction of the underlying automation code and have reusable automation code.

(Test) Scenarios derived from SpecFlow are executable specifications; their statements will have a corresponding code implementation. These test
scenarios are feature and more business oriented; they're not unit/integration tests.

Your specification is made using Gherkin (i.e. Given, When, That) statements in Scenario(s) or Scenario Outline(s), eventually complemented with a
Background. Implementation of each Gherkin statement (i.e. "step") is done in code; the SpecFlow framework finds the code based on regular or
cucumber expressions.

Usage scenarios
Tools such as Cucumber or SpecFlow are used in diverse scenarios. Next you may find some usage patterns, even though SpecFlow usage is mostly
recommended only if you are adopting BDD.

Teams adopting BDD, start by defining a user story and clarify it using Gherkin Scenario(s); usualy, Gherkin Scenario(s)/Scenario Outline(s) are
specified directly in Jira, using Xray
Teams adopting BDD but that favour a more Git based approach (e.g. GitOps). In this case, stories would be defined in Jira but Gherkin .feature
files would be specified using some IDE and would be stored in Git, for example
Teams not adopting BDD but still using SpecFlow, more as an automation framework. Sometimes focused on regression testing; sometimes, for
non-regression testing. In this case, SpecFlow would be used...

With a user story or some sort of "requirement" described in Jira
Without any story/"requirement" described in Jira

You may be adopting, or aiming to, one of the previous patterns.

Before moving into the actual implementation, we need to decide which workflow we'll use: do we want to use Xray/Jira as the master for writing the
declarative specification (i.e. the Gherkin based Scenarios), do we want to manage those outside using some editor and store them in Git, for example?or

Example

Source-code for this tutorial

Code is available in ; the repo contains some auxiliary scripts.GiHub

Learn more

Please see for an overview of the possible workflows. Testing in BDD with Gherkin based frameworks (e.g. Cucumber)

The place that you'll use to edit the SpecFlow Scenarios will affect your workflow. There are teams that prefer to edit Scenarios in Jira using
Xray, while there others that prefer to edit them by writing the .feature files by hand using some IDE.

https://github.com/Xray-App/tutorial-csharp-specflow
https://docs.getxray.app/pages/viewpage.action?pageId=68410215

For the purpose of this tutorial, we'll use a simple dummy Calculator implemented in a C# class as our target for testing.

The code is structure in two projects: one that we will be targeted by testing and one with the test code and SpecFlow.

Calculator.cs

namespace SpecFlowExamples
{
 public class Calculator
 {
 public int FirstNumber { get; set; }

 public int SecondNumber { get; set; }

 public int Add()
 {
 return FirstNumber + SecondNumber;
 }

 public int Subtract()
 {
 return FirstNumber - SecondNumber;
 }

 public int Divide()
 {
 if (FirstNumber == 0 || SecondNumber == 0)
 {
 return 0;
 }
 else
 {
 return FirstNumber / SecondNumber;
 }
 }

 public int Multiply()
 {
 return FirstNumber * SecondNumber;
 }
 }
}

Requirements

.NET 5.0 (.NET 6.0 is not supported by SpecFlow together with the SpecFlow+ Runner)
mono (SpecFlow reporting utility mono)requires
Packages

SpecFlow <= 3.9.40
SpecRun.SpecFlow <= 3.9.31
FluentAssertions

Try it yourself!

The code on this tutorial is available in the GitHub repository.tutorial-csharp-specflow

You can fork it, adapt, and try it for youself.

https://github.com/SpecFlowOSS/SpecFlow/issues/1991
https://github.com/Xray-App/tutorial-csharp-specflow

1.
2.

3.

4.
5.
6.
7.
8.
9.

Using Jira and Xray as master

This section assumes using Xray as master, i.e. the place that you'll be using to edit the specifications (e.g. the scenarios that are part of .feature files).

The overall flow would be something like this, assuming Git as the source code versioning system:

define the story (skip if you already have it)
create Scenario/Scenario Outline as a Test in Jira; usually, it would be linked to an existing "requirement"/Story (i.e. created from the respective
issue screen)
implement the code related to Gherkin statements/steps and store it in Git, for example. To start, and during development, you may need to
generate/export the .feature file to your local environment
commit previous code to Git
checkout the code from Git
generate .feature files based on the specification made in Jira
run the tests in the CI
obtain the report in Cucumber JSON format
import the results back to Jira

Note that steps (5-9) performed by the CI tool are all automated, obviously.

To generate .feature file(s) based on Scenarios defined in Jira (i.e. "Cucumber" Tests and Preconditions), we can do it directly from Jira, by the REST API
or using a CI tool; we'll see that ahead in more detail.

Step-by-step

Please note

To generate the Cucumber compatible JSON report that Xray is able to process, , which we need to use the "SpecFlow+ Runner" test runner
supports .Net Core up to .NET 5.0, and take advantage of the possibility of generating custom reports (more detail ahead).

Meanwhile, in January 2021 the SpecFlow team to end up with development of the "SpecFlow+ Runner" test runner. That means that decided
the "SpecFlow+ Runner" package is avaiable for .NET up to version 5.0 but it is no longer maintained. Additionaly, this runner is not available
for .NET 6.0, meaning that for .NET 6.0 there is no way of generating Cucumber JSON reports, as the supported test runners (e.g., NUnit,
xUnit, MSTest) don't support it; if using SpecFlow and integrating it with Xray, or any other tool that uses Cucumber JSON reports, is important
to you, then you should .reach out SpecFlow team

If you use NUnit, xUnit, or MSTest as test runners, then SpecFlow isn't able of generating Cucumber JSON reports.

https://specflow.org/using-specflow/the-retirement-of-specflow-runner/
https://support.specflow.org/

All starts with a user story or some sort of “requirement” that you wish to validate. This is materialized as a Jira issue and identified by the corresponding
issue key (e.g. CALC-7931).

We can promptly check that it is “UNCOVERED” (i.e. that it has no tests covering it, no matter their type/approach).

In this case, we'll create a Cucumber Test, of Cucumber Type "Scenario".

We can fill out the Gherkin statements immediately on the Jira issue create dialog or we can create the Test issue first and fill out the details on the next
screen, from within the Test issue. In the latter case, we can take advantage of the built-in Gherkin editor which provides auto-complete of Gherkin steps.

After the Test is created, and since we have done it from the user story screen, it will impact the coverage of related "requirement"/story.

The coverage and the test results can be tracked in the "requirement" side (e.g. user story). In this case, you may see that coverage changed from being
UNCOVERED to NOTRUN (i.e. covered and with at least one test not run).

Additional tests could be created, eventually linked to the same Story.

The related statement's code is managed outside of Jira and stored in Git, for example.

Our target "application" to test, is in fact a simple Calculator class, stored and managed under the project directory.Calculator

The tests related code is stored under project directory, which itself contains several other directories. In this case, they're organized Calculator.Specs
as follows:

TestResults/: where the test result reports will ge created.
Steps/: step implementation files. The steps "glue-code" is defined in CalculatorStepDefinitions.cs class.

Calculator.Specs/Steps/CalculatorStepDefinitions.cs

using System;
using FluentAssertions;
using TechTalk.SpecFlow;

namespace SpecFlowExamples.Specs.Steps
{
 [Binding]
 public sealed class CalculatorStepDefinitions
 {
 private int _result;
 private Calculator _calculator = new Calculator();

 [Given(@"I have entered (.*) into the calculator")]
 public void GivenIHaveEnteredIntoTheCalculator(int number)
 {
 _calculator.FirstNumber = number;
 }

 [Given(@"I have also entered (.*) into the calculator")]
 public void GivenIHaveAlsoEnteredIntoTheCalculator(int number)
 {
 _calculator.SecondNumber = number;
 }

 [When(@"I press add")]
 public void WhenIPressAdd()
 {
 _result = _calculator.Add();
 }

 [Then(@"the result should be (.*) on the screen")]
 public void ThenTheResultShouldBeOnTheScreen(int expectedResult)
 {
 // Assert.AreEqual(expectedResult, result);
 _result.Should().Be(expectedResult);
 }
 }
}

You can then export the specification of the test to a Gherkin .feature file via the REST API, or the UI action from within the Test Export to Cucumber
/Test Execution issue or even based on an existing saved filter. As source, you can identify Test, Test Set, Test Execution, Test Plan or "requirement"
issues. A plugin for your CI tool of choice can be used to ease this task.

So, you can either:

use one of the available CI/CD plugins (e.g. see details of)Integration with Jenkins

use the REST API directly (more info) here

https://docs.getxray.app/display/XRAY500/Integration+with+Jenkins
https://docs.getxray.app/display/XRAY500/Exporting+Cucumber+Tests+-+REST

#!/bin/bash

rm -f Features/*.feature Features/*.cs
curl -u admin:admin "http://jiraserver.example.com/rest/raven/1.0/export/test?keys=XT-
356&fz=true" -o features.zip
unzip -o features.zip -d Features

... or even use the UI (e.g. from the Story issue)

We will export the features to a new directory named Features/ on the root folder of your C# testing-dedicated project.

After being exported, the created .feature(s) will contain references to the Test issue key, eventually prefixed (e.g. "TEST_") depending on an Xray global
setting, and the covered "requirement" issue key, if that's the case. The naming of these files is detailed in .Export Cucumber Features

https://docs.getxray.app/display/XRAY630/Export+Cucumber+Features

features/1_XT-356.feature

@REQ_XT-356
Feature: As a user, I can calculate the sum of two numbers

 @TEST_XT-359 @XT-355
 Scenario Outline: sum of two positive numbers
 Given I have entered <input_1> into the calculator
 And I have also entered <input_2> into the calculator
 When I press <button>
 Then the result should be <output> on the screen

 Examples:
 | input_1 | input_2 | button | output |
 | 20 | 30 | add | 50 |
 | 2 | 5 | add | 7 |
 | 0 | 40 | add | 40 |
 | 4 | 50 | add | 54 |
 | 5 | 50 | add | 55 |

 @TEST_XT-358 @XT-355
 Scenario: negative integer addition
 Given I have entered -1 into the calculator
 And I have also entered 2 into the calculator
 When I press add
 Then the result should be 1 on the screen

 @TEST_XT-357 @XT-355
 Scenario: simple integer addition
 Given I have entered 1 into the calculator
 And I have also entered 2 into the calculator
 When I press add
 Then the result should be 3 on the screen

Before compiling and running the tests, you have to use a proper SpecFlow report template file in order to generate a valid Cucumber JSON report and
you have to configure the (e.g.,) to use it. SpecFlow+ Runner profile Default.srprofile

Default.srprofile

<?xml version="1.0" encoding="utf-8"?>
<TestProfile xmlns="http://www.specrun.com/schemas/2011/09/TestProfile">
 <Settings name="dummy" projectName="Calculator.Specs" />
 <Execution stopAfterFailures="3" testThreadCount="1" testSchedulingMode="Sequential" />

 <TestAssemblyPaths>
 <TestAssemblyPath>Calculator.Specs.dll</TestAssemblyPath>
 </TestAssemblyPaths>

 <Report copyAlsoToBaseFolder="false">
 <Template name="../../../CucumberJson.cshtml" outputName="cucumber.json" existingFileHandlingStrategy="
Overwrite" />
 </Report>

</TestProfile>

"SpecFlow+ Runner" supports and provides a report template tailored for the generation of Cucumber JSON reports. You can can customizable reports
copy it from your local packages directory (e.g.,) to your test .nuget/packages/specrun.runner/3.9.31/templates/CucumberJson.cshtml
project directory. This template has changed slightly with SpecFlow 3, so please make sure you use the proper one for your scenario.

https://docs.specflow.org/projects/specflow-runner/en/latest/Profile/Profiles.html
https://docs.specflow.org/projects/specflow-runner/en/latest/Usage/Tutorial-Customising-Reports.html

CucumberJson.cshtml

@inherits SpecFlow.Plus.Runner.Reporting.CustomTemplateBase<TestRunResult>
@using System
@using System.Collections.Generic
@using System.Linq
@using System.Globalization
@using Newtonsoft.Json
@using Newtonsoft.Json.Converters
@using TechTalk.SpecRun.Framework
@using TechTalk.SpecRun.Framework.Results
@using TechTalk.SpecRun.Framework.TestSuiteStructure
@using TechTalk.SpecRun.Framework.Tracing
@{
 var serializationSettings = new JsonSerializerSettings
 {
 ReferenceLoopHandling = ReferenceLoopHandling.Ignore,
 Converters = new List<JsonConverter>() { new StringEnumConverter(false) }
 };

 var features = GetTextFixtures()
 .Select(f => new
 {
 description = "",
 elements = (from scenario in f.SubNodes
 let lastExecutionResult = GetTestItemResult(scenario.GetTestSequence().First()).
LastExecutionResult()
 select new
 {
 description = "",
 id = "",
 keyword = "Scenario",
 line = scenario.Source.SourceLine + 1,
 name = scenario.Title,
 tags = scenario.Tags.Select(t => new { name = t, line = 1 }),
 steps = from step in lastExecutionResult.Result.TraceEvents
 where IsRelevant(step) && (step.ResultType == TestNodeResultType.Succeeded
|| step.ResultType == TestNodeResultType.Failed || step.ResultType == TestNodeResultType.Pending)
 && (step.Type == TraceEventType.Test || step.Type == TraceEventType.TestAct
|| step.Type == TraceEventType.TestArrange || step.Type == TraceEventType.TestAssert)
 let keyword = step.StepBindingInformation == null ? "" : step.
StepBindingInformation.StepInstanceInformation == null ? "" : step.StepBindingInformation.
StepInstanceInformation.Keyword
 let matchLocation = step.StepBindingInformation == null ? "" : step.
StepBindingInformation.MethodName
 let name = step.StepBindingInformation == null ? "" : step.
StepBindingInformation.Text
 let cucumberStatus = step.ResultType == TestNodeResultType.Succeeded ?
"Passed" : step.ResultType.ToString()
 select new
 {
 keyword = keyword,
 line = 0,
 match = new
 {
 location = matchLocation
 },
 name = name,
 result = new
 {
 duration = step.Duration.TotalMilliseconds,
 error_message = step.StackTrace,
 status = cucumberStatus
 }
 },
 type = "scenario"
 }).ToList(),
 id = "",
 keyword = "Feature",
 line = f.Source.SourceLine + 1,

 tags = f.Tags.Select(t => new { name = t, line = 1 }),
 name = f.Title,
 uri = f.Source.SourceFile
 });
}
@Raw(JsonConvert.SerializeObject(features, Formatting.Indented, serializationSettings))

Tests can be run from within the IDE (e.g. Visual Studio) or by the command line using , for example; in the later case, make sure to specify the dotnet
profile name and all the paths properly.

To run the tests and produce a Cucumber JSON report, we can use , for example.dotnet

dotnet clean
dotnet test

This will produce one Cucumber JSON report with all results.

After running the tests, results can be imported to Xray via the REST API, or the action within an existing Test Execution, or by Import Execution Results
using one of the available CI/CD plugins (e.g. see an example of).Integration with Jenkins

example of a Bash script to import results using the standard Cucumber endpoint

curl -H "Content-Type: application/json" -X POST -u admin:admin --data @"TestResults/cucumber.json"
http://jiraserver.example.com/rest/raven/2.0/import/execution/cucumber

https://docs.getxray.app/display/XRAY500/Integration+with+Jenkins

A new Test Execution will be created (unless you originally exported the Scenarios/Scenario Outlines from a Test Execution).

The execution screen details of the Test Run will provide overall status information and Gherkin statement-level results.

Results, including for each example on Scenario Outline, can be expanded to see all Gherkin statements.

1.
2.

Which Cucumber endpoint to use?

To import results, you can use two different endpoints/"formats" (endpoints described in):Import Execution Results - REST

the "standard cucumber" endpoint
the "multipart cucumber" endpoint

The standard cucumber endpoint (i.e. is simpler but more restrictive: you cannot specify values for custom fields /import/execution/cucumber)
on the Test Execution that will be created. This endpoint creates new Test Execution issues unless the Feature contains a tag having an issue
key of an existing Test Execution.

The multipart cucumber endpoint will allow you to customize fields (e.g. Fix Version, Test Plan), if you wish to do so, on the Test Execution that
will be created. Note that this endpoint always creates new Test Executions (as of Xray v4.2).

In sum, if you want to customize the Fix Version, Test Plan and/or Test Environment of the Test Execution issue that will be created, you'll have
to use the "multipart cucumber" endpoint.

https://docs.getxray.app/display/XRAY500/Import+Execution+Results+-+REST

Results are reflected on the covered items (e.g. Story issues) and can be seen in ther issue screen.

Coverage now shows that the addition related user story (e.g. XT-356) is OK based on the latest testing results.

1.
2.

3.
4.
5.
6.
7.
8.
9.

10.

Using Git or other VCS as master

You can edit your .feature files using your IDE outside of Jira (eventually storing them in your VCS using Git, for example) alongside with remaining test
code.

In any case, you'll need to synchronize your .feature files to Jira so that you can have visibility of them and report results against them.

The overall flow would be something like this:

look at the existing "requirement"/Story issue keys to guide your testing; keep their issue keys
specify SpecFlow/Gherkin .feature files in your IDE supporting SpecFlow/Gherkin and store it in Git, for example. Meanwhile, you may decide to
import/synchronize them Xray to provision or update corresponding Test and/or Precondition entities
implement the code related to Gherkin statements/steps and store it in Git, for example.
commit code and .feature file(s) to Git
checkout the code from Git
import/synchronize the .feature files to Xray to provision or update corresponding Test and/or Precondition entities
export/generate .feature files from Jira, so that they contain references to Tests and requirements in Jira
run the tests in the CI
obtain the report in Cucumber JSON format
import the results back to Jira

Note that steps (5-10) performed by the CI tool are all automated, obviously.

To import .features to Jira we can either use the REST API or a CI tool. To export tagged .features from Jira, we can do it directly from Jira, by the REST
API or using a CI tool.

Learn more

Please check the tutorial which showcases this flow for Cucumber+Java and adapt it accordingly to the Testing using Cucumber in Java
SpecFlow use case.

https://docs.getxray.app/display/XRAY630/Testing+using+Cucumber+in+Java

FAQ and Recommendations
Please see .this page

References
Code used in this tutorial, along with some auxiliary scripts
SpecFlow documentation
Testing in BDD with Gherkin based frameworks (e.g. Cucumber)
Automated Tests (Import/Export)
Exporting Cucumber Tests - REST
https://github.com/SpecFlowOSS/SpecFlow-Examples

https://docs.getxray.app/pages/viewpage.action?pageId=97650410#TestinginBDDwithGherkinbasedframeworks(e.g.Cucumber)-Commonproblems
https://github.com/Xray-App/tutorial-csharp-specflow
https://specflow.org/getting-started/
https://docs.getxray.app/pages/viewpage.action?pageId=97650410
https://docs.getxray.app/pages/viewpage.action?pageId=97649551
https://docs.getxray.app/display/XRAY630/Exporting+Cucumber+Tests+-+REST
https://github.com/SpecFlowOSS/SpecFlow-Examples

	Testing using SpecFlow and Gherkin scenarios in C#

