Testing using SpecFlow and Gherkin scenarios in C#

® Overview
® Usage scenarios
® Example

© Requirements

© Using Jira and Xray as master

= Step-by-step

O Using Git or other VCS as master
® FAQ and Recommendations
* References

Overview

In this tutorial, we will create some test scenarios in SpecFlow using C#.

Similarly to Cucumber, SpecFlow is mainly a collaboration framework used in BDD context in order to improve shared understanding within the team,
usually during "3 Amigos" sessions. That's its main fit.

However, some teams use it in other contexts (e.g. after sofware has being built) for implementing automated tests and take advantage of Gherkin syntax
to have visibility/abstraction of the underlying automation code and have reusable automation code.

(Test) Scenarios derived from SpecFlow are executable specifications; their statements will have a corresponding code implementation. These test
scenarios are feature and more business oriented; they're not unit/integration tests.

Your specification is made using Gherkin (i.e. Given, When, That) statements in Scenario(s) or Scenario Outline(s), eventually complemented with a
Background. Implementation of each Gherkin statement (i.e. "step") is done in code; the SpecFlow framework finds the code based on regular or
cucumber expressions.

Source-code for this tutorial

Code is available in GiHub; the repo contains some auxiliary scripts.

Usage scenarios

Tools such as Cucumber or SpecFlow are used in diverse scenarios. Next you may find some usage patterns, even though SpecFlow usage is mostly
recommended only if you are adopting BDD.

1. Teams adopting BDD, start by defining a user story and clarify it using Gherkin Scenario(s); usualy, Gherkin Scenario(s)/Scenario Outline(s) are
specified directly in Jira, using Xray
2. Teams adopting BDD but that favour a more Git based approach (e.g. GitOps). In this case, stories would be defined in Jira but Gherkin .feature
files would be specified using some IDE and would be stored in Git, for example
3. Teams not adopting BDD but still using SpecFlow, more as an automation framework. Sometimes focused on regression testing; sometimes, for
non-regression testing. In this case, SpecFlow would be used...
a. With a user story or some sort of "requirement” described in Jira
b. Without any story/"requirement" described in Jira

You may be adopting, or aiming to, one of the previous patterns.

Before moving into the actual implementation, we need to decide which workflow we'll use: do we want to use Xray/Jira as the master for writing the
declarative specification (i.e. the Gherkin based Scenarios), or do we want to manage those outside using some editor and store them in Git, for example?

@ Learn more

Please see Testing in BDD with Gherkin based frameworks (e.g. Cucumber) for an overview of the possible workflows.

The place that you'll use to edit the SpecFlow Scenarios will affect your workflow. There are teams that prefer to edit Scenarios in Jira using
Xray, while there others that prefer to edit them by writing the .feature files by hand using some IDE.

Example

https://github.com/Xray-App/tutorial-csharp-specflow
https://docs.getxray.app/pages/viewpage.action?pageId=68410215

For the purpose of this tutorial, we'll use a simple dummy Calculator implemented in a C# class as our target for testing.

The code is structure in two projects: one that we will be targeted by testing and one with the test code and SpecFlow.

@ Try it yourself!

The code on this tutorial is available in the tutorial-csharp-specflow GitHub repository.

You can fork it, adapt, and try it for youself.

Calculator.cs

nanmespace SpecFl owExanpl es

{
public class Cal cul ator
{
public int FirstNunber { get; set; }
public int SecondNunber { get; set; }
public int Add()
{
return FirstNunber + SecondNunber;
}
public int Subtract()
{
return FirstNunber - SecondNunber;
}
public int Divide()
{
if (FirstNumber == 0 || SecondNunmber == 0)
{
return O;
}
el se
{
return FirstNunber / SecondNunber;
}
}
public int Miltiply()
{
return FirstNunber * SecondNunber;
}
}
}

Requirements

® NET 5.0 (.NET 6.0 is not supported by SpecFlow together with the SpecFlow+ Runner)
® mono (SpecFlow reporting utility requires mono)
® Packages

© SpecFlow <= 3.9.40

O SpecRun.SpecFlow <= 3.9.31

© FluentAssertions

https://github.com/SpecFlowOSS/SpecFlow/issues/1991
https://github.com/Xray-App/tutorial-csharp-specflow

@ Please note

To generate the Cucumber compatible JSON report that Xray is able to process, we need to use the "SpecFlow+ Runner" test runner, which
supports .Net Core up to .NET 5.0, and take advantage of the possibility of generating custom reports (more detail ahead).

Meanwhile, in January 2021 the SpecFlow team decided to end up with development of the "SpecFlow+ Runner" test runner. That means that
the "SpecFlow+ Runner" package is avaiable for .NET up to version 5.0 but it is no longer maintained. Additionaly, this runner is not available
for .NET 6.0, meaning that for .NET 6.0 there is no way of generating Cucumber JSON reports, as the supported test runners (e.g., NUnit,
xUnit, MSTest) don't support it; if using SpecFlow and integrating it with Xray, or any other tool that uses Cucumber JSON reports, is important
to you, then you should reach out SpecFlow team.

If you use NUnit, xUnit, or MSTest as test runners, then SpecFlow isn't able of generating Cucumber JSON reports.

Using Jira and Xray as master
This section assumes using Xray as master, i.e. the place that you'll be using to edit the specifications (e.g. the scenarios that are part of .feature files).
The overall flow would be something like this, assuming Git as the source code versioning system:

1. define the story (skip if you already have it)

2. create Scenario/Scenario Outline as a Test in Jira; usually, it would be linked to an existing "requirement"/Story (i.e. created from the respective
issue screen)

. implement the code related to Gherkin statements/steps and store it in Git, for example. To start, and during development, you may need to
generate/export the .feature file to your local environment

. commit previous code to Git

. checkout the code from Git

. generate .feature files based on the specification made in Jira

. run the tests in the ClI

. obtain the report in Cucumber JSON format

. import the results back to Jira

w

©oo~NO O

Xray + Jira Some IDE Cl tool SpecFlow
I (e.g. Visual Studio, VSCode) I
|

1. Define story

2. Describe Scenarios and Background
as Test & Precondition issues

5. Checkout code from Git/SVN

Note that steps (5-9) performed by the CI tool are all automated, obviously.

To generate .feature file(s) based on Scenarios defined in Jira (i.e. "Cucumber"” Tests and Preconditions), we can do it directly from Jira, by the REST API
or using a Cl tool; we'll see that ahead in more detail.

Step-by-step

https://specflow.org/using-specflow/the-retirement-of-specflow-runner/
https://support.specflow.org/

All starts with a user story or some sort of “requirement” that you wish to validate. This is materialized as a Jira issue and identified by the corresponding
issue key (e.g. CALC-7931).

m Xray Tutorials / XT-356

= As auser, | can calculate the sum of two numbers

Edit Q Comment Assign More v ToDo InProgress Done Admin v

v Details
Type: [Story Status: (View Workflow)
Priority: O Trivial Resolution: Unresolved
Labels: None

v Description
Click to add description

v Test Coverage

No Tests were found testing the requirement.

Add Tests v

We can promptly check that it is “UNCOVERED? (i.e. that it has no tests covering it, no matter their type/approach).

In this case, we'll create a Cucumber Test, of Cucumber Type "Scenario”.

We can fill out the Gherkin statements immediately on the Jira issue create dialog or we can create the Test issue first and fill out the details on the next
screen, from within the Test issue. In the latter case, we can take advantage of the built-in Gherkin editor which provides auto-complete of Gherkin steps.

Xray Tutorials / XT-357
= simple integer addition

Edit Q Comment Assign More v ToDo InProgress Done Admin v

v Details
Type: [Test Status: (View Workflow)
Priority: O Trivial Resolution: Unresolved
Labels: None

v Description
Click to add description

v Test Details

Type: Cucumber
Scenario Type: Scenario
Scenario: Given I have entered 1 into the calculator

And I have also entered 2 into the calculator
When I press add
Then the result should be 3 on the screen

Z Edit Steps

After the Test is created, and since we have done it from the user story screen, it will impact the coverage of related "requirement"/story.

The coverage and the test results can be tracked in the "requirement" side (e.g. user story). In this case, you may see that coverage changed from being
UNCOVERED to NOTRUN (i.e. covered and with at least one test not run).

Xray Tutorials / XT-356
As a user, | can calculate the sum of two numbers

Edit Q Comment Assign More v ToDo InProgress Done Admin v

v Details
Type:] story Status: (View Workflow)
Priority: O Trivial Resolution: Unresolved
Labels: None
Requirement Status: —

v Description

Click to add description 4

v Test Coverage

LUGRES GO Execute v

TEST COVERAGE FOR THE FOLLOWING ANALYSIS SCOPE

Scope: Version; Version: None - latest execution; Environment: All Environments ~

= Filter(s)
B~ Show entries Columns
P Status Resolution 4 Key Summary Test Runs Test Status
O (o] TOoDO Unresolved XT-357 simple integer addition I -

Additional tests could be created, eventually linked to the same Story.

The related statement's code is managed outside of Jira and stored in Git, for example.
Our target "application” to test, is in fact a simple Calculator class, stored and managed under the Cal cul at or project directory.

The tests related code is stored under Cal cul at or. Specs project directory, which itself contains several other directories. In this case, they're organized
as follows:

® Test Resul t s/ : where the test result reports will ge created.
® St eps/: step implementation files. The steps "glue-code" is defined in CalculatorStepDefinitions.cs class.

Calculator.Specs/Steps/CalculatorStepDefinitions.cs

using System
usi ng Fl uent Asserti ons;
usi ng TechTal k. SpecFl ow,

nanmespace SpecFl owExanpl es. Specs. St eps

{
[Bi ndi ng]
public seal ed class Cal cul at or St epDefi nitions
{
private int _result;
private Calculator _calculator = new Cal culator();
[Gven(@! have entered (.*) into the calculator")]
public void G venl HaveEnt er edl nt oTheCal cul at or (i nt nunber)
{
_cal cul ator. FirstNunmber = nunber;
}
[Gven(@!| have also entered (.*) into the calculator")]
public void G venl HaveAl soEnt er edl nt oTheCal cul at or (i nt nunber)
{
_cal cul at or. SecondNunber = nunber;
}
[When(@ 1 press add")]
public void Wenl PressAdd()
{
_result = _calculator.Add();
}
[Then(@the result should be (.*) on the screen")]
public void ThenTheResul t Shoul dBeOnTheScreen(int expectedResult)
{
/1 Assert.AreEqual (expectedResult, result);
_resul t. Shoul d() . Be(expectedResult);
}
}
}

You can then export the specification of the test to a Gherkin .feature file via the REST API, or the Export to Cucumber Ul action from within the Test
/Test Execution issue or even based on an existing saved filter. As source, you can identify Test, Test Set, Test Execution, Test Plan or "requirement"
issues. A plugin for your CI tool of choice can be used to ease this task.
So, you can either:

® use one of the available CI/CD plugins (e.g. see details of Integration with Jenkins)

Xray: Cucumber Features Export Task

Jira Instance

Xray-vm
Issues: XT-356
Filter:

File Path:

Calculator.Specs/Features

Click here for more details
o]
® use the REST API directly (more info here)

https://docs.getxray.app/display/XRAY500/Integration+with+Jenkins
https://docs.getxray.app/display/XRAY500/Exporting+Cucumber+Tests+-+REST

© #!1/bi n/ bash

rm-f Features/*.feature Features/*.cs

curl -u admin:admin "http://jiraserver.exanple.comrest/raven/ 1.0/ export/test?keys=XT-
356&f z=true" -o features.zip

unzip -o features.zip -d Features

® .. oreven use the Ul (e.g. from the Story issue)
Xray Tutorials / XT-356
As a user, | can calculate the sum of two numbers

Edit Q Comment Assign More v ToDo InProgress Done Admin v

v Details
Type:) story Status: (View Workflow)
Priority: O Trivial Resolution: Unresolved
Labels: None

Requirement Status:

v Description
Click to add description

v Test Coverage
LULRCEORE Execute v

TEST COVERAGE FOR THE FOLL(

Export to Cucumber

Jl Export to Cucumber
Scope: Version; Version: None - latest i i All i -

= Filter(s)

We will export the features to a new directory named Feat ur es/ on the root folder of your C# testing-dedicated project.

After being exported, the created .feature(s) will contain references to the Test issue key, eventually prefixed (e.g. "TEST_") depending on an Xray global
setting, and the covered "requirement” issue key, if that's the case. The naming of these files is detailed in Export Cucumber Features.

https://docs.getxray.app/display/XRAY630/Export+Cucumber+Features

features/1_XT-356.feature

@REQ_XT- 356
Feature: As a user, | can calculate the sumof tw nunbers

@EST_XT- 359 @XT- 355

Scenario Qutline: sumof two positive nunbers
G ven | have entered <input_1> into the cal cul ator
And | have al so entered <input_2> into the calcul ator
Wien | press <button>
Then the result should be <output> on the screen

Exanpl es:
input_1	input_2	button	output
20	30	add	50
2	5	add	7
O	40	add	40
4	50	add	54
5	50	add	55

@IEST_XT- 358 @XT- 355

Scenari o: negative integer addition
Gven | have entered -1 into the cal cul ator
And | have also entered 2 into the cal cul ator
Wien | press add
Then the result should be 1 on the screen

@IEST_XT- 357 @XT-355

Scenario: sinple integer addition
Gven | have entered 1 into the cal cul ator
And | have also entered 2 into the cal cul ator
Wien | press add
Then the result should be 3 on the screen

Before compiling and running the tests, you have to use a proper SpecFlow report template file in order to generate a valid Cucumber JSON report and
you have to configure the SpecFlow+ Runner profile (e.g., Def aul t . srprofil e)to use it.

Default.srprofile

<?xm version="1.0" encodi ng="utf-8"?>
<TestProfile xnmlns="http://ww.specrun.conm schemas/ 2011/ 09/ TestProfile">
<Set tings name="dummy" proj ect Nane="Cal cul at or. Specs" />
<Execution stopAfterFailures="3" testThreadCount="1" testSchedul i ngvbde="Sequential" />

<Test Assenbl yPat hs>
<Test Assenbl yPat h>Cal cul at or. Specs. dl | </ Test Assenbl yPat h>
</ Test Assenbl yPat hs>

<Report copyAl soToBaseFol der="f al se">
<Tenpl ate name="../../../CucunberJson.cshtm " out put Nane="cucunber.json" existingFileHandlingStrategy="
Overwrite" />
</ Report >

</ Test Profil e>

"SpecFlow+ Runner" supports customizable reports and provides a report template tailored for the generation of Cucumber JSON reports. You can can
copy it from your local packages directory (e.g., . nuget / packages/ specrun. runner/ 3. 9. 31/t enpl at es/ Cucunber Json. csht nl) to your test
project directory. This template has changed slightly with SpecFlow 3, so please make sure you use the proper one for your scenario.

https://docs.specflow.org/projects/specflow-runner/en/latest/Profile/Profiles.html
https://docs.specflow.org/projects/specflow-runner/en/latest/Usage/Tutorial-Customising-Reports.html

CucumberJson.cshtml

@ nherits SpecFl ow. Pl us. Runner. Reporti ng. Cust onTenpl at eBase<Test RunResul t >

@si
@isi
@isi
@isi
@isi
@si
@isi
@isi
@si
@isi
@

ng
ng
ng
ng
ng
ng
ng
ng
ng
ng

System

Syst em Col | ecti ons. Generic
System Li ng

System d obal i zati on

Newt onsoft. Json

Newt onsoft. Json. Converters

TechTal k. SpecRun. Fr anewor k

TechTal k. SpecRun. Framewor k. Resul t s

TechTal k. SpecRun. Franmewor k. Test Sui t eStruct ure
TechTal k. SpecRun. Framewor k. Tr aci ng

var serializationSettings = new JsonSerializerSettings

{

}

Ref erenceLoopHandl i ng = ReferenceLoopHandl i ng. | gnor e,
Converters = new List<JsonConverter>() { new StringEnunConverter(false) }

var features = Get Text Fi xtures()

.Sel ect(f => new

{

description =
elements = (fromscenario in f.SubNodes

let | astExecutionResult = GetTestltenResult(scenario. CGetTest Sequence().First()).

Last Executi onResul t ()

|| step.ResultType == Test NodeResul t Type. Fail ed ||

|| step.Type == TraceEvent Type. Test Arrange || step. Type

sel ect new
{

description = ""
id="",

keyword = "Scenario",

line = scenario. Source. SourceLine + 1,

namne scenario. Title,

tags = scenario.Tags. Select(t => new { nane =t, line =1 }),
steps = fromstep in | ast ExecutionResult.Result. TraceEvents
where | sRel evant (step) && (step. Result Type == Test NodeResul t Type. Succeeded

&& (step. Type ==

st ep. Resul t Type == Test NodeResul t Type. Pendi ng)

TraceEvent Type. Test || step. Type == TraceEvent Type. Test Act

== TraceEvent Type. Test Assert)

let keyword = step. StepBindinglnformation == null ? "" : step.
St epBi ndi ngl nf or mati on. St epl nstancel nformation == null ? "" : step. StepBindi ngl nfornation.
St epl nst ancel nf or mat i on. Keywor d

I et matchLocation = step. StepBindinglnfornmation == null ? "" : step.
St epBi ndi ngl nf or mati on. Met hodNane

l et nanme = step. StepBindinglnformation == null ? "" : step.

St epBi ndi ngl nf or mati on. Text

| et cucunber St at us
"Passed" : step.ResultType. ToString()

sel ect new

= step. Resul t Type == Test NodeResul t Type. Succeeded ?

mat chLocat i on

step. Duration. Total M11iseconds,

error_nessage = step. StackTrace,
status = cucunber St at us

{
keyword = keyword,
line = 0,
match = new
{
location =
b,
nane = nane,
result = new
{
duration =
}
b,
type = "scenario"
}). ToList(),
id ="",
keyword = "Feature",

line = f.Source. SourceLine + 1,

tags = f.Tags. Select(t => new{ nane =t, line = 11}),
nane = f.Title,
uri = f.Source. SourceFile
IoF
}

@Raw(JsonConvert. Seri al i zeObj ect (features, Formatting.|ndented, serializationSettings))

Tests can be run from within the IDE (e.g. Visual Studio) or by the command line using dot net , for example; in the later case, make sure to specify the
profile name and all the paths properly.

To run the tests and produce a Cucumber JSON report, we can use dot net , for example.

dot net cl ean
dotnet test

This will produce one Cucumber JSON report with all results.

After running the tests, results can be imported to Xray via the REST API, or the Import Execution Results action within an existing Test Execution, or by
using one of the available CI/CD plugins (e.g. see an example of Integration with Jenkins).

example of a Bash script to import results using the standard Cucumber endpoint
curl -H "Content-Type: application/json" -X POST -u admi n:adm n --data @ Test Resul ts/cucunber.json"

http://jiraserver.exanpl e.comrest/raven/2.0/inport/execution/cucunber

Post-build Actions

Xray: Results Import Task

Jira Instance xray-vm

Format Cucumber JSON

Parameters

Execution Report File (file path with file name) Calculator.Specs/TestResults/cucumber.json

Import in parallel O

Import all results files in parallel, using all available CPU cores.

Click here for more details

https://docs.getxray.app/display/XRAY500/Integration+with+Jenkins

{D Which Cucumber endpoint to use?

To import results, you can use two different endpoints/“formats" (endpoints described in Import Execution Results - REST):

1. the "standard cucumber" endpoint
2. the "multipart cucumber" endpoint

The standard cucumber endpoint (i.e. /import/execution/cucumber) is simpler but more restrictive: you cannot specify values for custom fields
on the Test Execution that will be created. This endpoint creates new Test Execution issues unless the Feature contains a tag having an issue

key of an existing Test Execution.

The multipart cucumber endpoint will allow you to customize fields (e.g. Fix Version, Test Plan), if you wish to do so, on the Test Execution that

will be created. Note that this endpoint always creates new Test Executions (as of Xray v4.2).

In sum, if you want to customize the Fix Version, Test Plan and/or Test Environment of the Test Execution issue that will be created, you'll have
to use the "multipart cucumber" endpoint.

A new Test Execution will be created (unless you originally exported the Scenarios/Scenario Outlines from a Test Execution).

]

Xray Tutorials / XT-363

Execution results [1645187640625]

Edit Q Comment

v Details
Type:
Priority:
Labels:
Test Plan:

Test Environments:

<

Description

Click to add description

<

Tests

Add Tests v

Overall Execution Status

PASS
Total Tests: 3
= Filter(s)
= v Apply Rank
Rank

0 3
0 2
0 1

The execution screen details of the Test Run will provide overall status information and Gherkin statement-level results.

Assign

More v ToDo In Progress

2 Test Execution

O Trivial

None
None

None

A Key

XT-357

XT-358

XT-359

Summary

simple integer addition

negative integer addition

sum of two positive numbers

Done

Test Type

Cucumber

Cucumber

Cucumber

Admin v

#Req

Resolution:

#Def

(View Workflow)
Unresolved

Show | 100 V |entries

Assignee Dataset Status
Xpand IT Admin
Xpand IT Admin

Xpand IT Admin

Results, including for each example on Scenario Outline, can be expanded to see all Gherkin statements.

Columns ~

https://docs.getxray.app/display/XRAY500/Import+Execution+Results+-+REST

Xray Tutorials / Test Execution: XT-363 / Test: XT-359

sum of two posi tive numbers L] Import Execution Results Export to Cucumber A Return to Test Execution Next b
Test Details
A Custom Fields
There are no Test Run Custom Fields defined.
> Test Description
> Testlssue Links @
Test Type: Cucumber
Scenario Type: Scenario Outline
Scenario: 1 Given I have entered <input_1> into the calculator
2 And I have also entered <input_2> into the calculator
3 When I press <button>
4 Then the result should be <output> on the screen
5
6 Examples:
7 | input_1 | input_2 | button | output |
8 120 130 | add | 50 |
9 12 I's | add |7 |
10 K 1 40 | add | 40 |
1 14 1 50 | add | 54 |
12 I's 1 50 I add | 55 |
A Examples
<input_1> <input_2> <button> <output> Duration status
- v 2 30 add 50 oocoms (NN
Steps
Given | have entered 20 into the calculator ooooms NED
And | have also entered 30 into the calculator ooooms NZEED
When | press add ooooms NZEERD
Then the result should be 50 on the screen ooooms (IS
> o2 s aca 7 coooms (IS
>0 40 add 40 oocoms NZESED
> 4 50 add s ooooms NS
» s 50 add s ooooms D

Results are reflected on the covered items (e.g. Story issues) and can be seen in ther issue screen.

Coverage now shows that the addition related user story (e.g. XT-356) is OK based on the latest testing results.

Xray Tutorials / XT-356

As a user, | can calculate the sum of two numbers

Edit

Q Comment

v Details

Type:

Priority:

Labels:

Requirement Status:

v Description

Click to add description

v Test Coverage

LUGRES O Execute v oo

TEST COVERAGE FOR THE FOLLOWING ANALYSIS SCOPE

Assign More v

) story
O Trivial
None

To Do

In Progress

T ——

Done Admin v

Status:
Resolution:

Scope: Version; Version: None - latest execution; Environment: All Environments ~

O
O
@]

= Filter(s)

O O ©o

Statu:

TO DO

TODO

TODO

s Resolution

Unresolved

Unresolved

Unresolved

A Key
XT-357
XT-358

XT-359

Summary
simple integer addition
negative integer addition

sum of two positive numbers

(View Workflow)
Unresolved
Test Runs
0
0
0

Show

v|entries Columns ~

Test Status

Using Git or other VCS as master

You can edit your .feature files using your IDE outside of Jira (eventually storing them in your VCS using Git, for example) alongside with remaining test
code.

In any case, you'll need to synchronize your .feature files to Jira so that you can have visibility of them and report results against them.

The overall flow would be something like this:

. look at the existing "requirement"/Story issue keys to guide your testing; keep their issue keys
. specify SpecFlow/Gherkin .feature files in your IDE supporting SpecFlow/Gherkin and store it in Git, for example. Meanwhile, you may decide to
import/synchronize them Xray to provision or update corresponding Test and/or Precondition entities

N -

(create/update Tests and Preconditions)

7. Generate/Export feature files
BT

9. Process results & build report g oy |

|
10. Submit results to Xray I

3. implement the code related to Gherkin statements/steps and store it in Git, for example.
4. commit code and .feature file(s) to Git
5. checkout the code from Git
6. import/synchronize the .feature files to Xray to provision or update corresponding Test and/or Precondition entities
7. export/generate .feature files from Jira, so that they contain references to Tests and requirements in Jira
8. run the tests in the ClI
9. obtain the report in Cucumber JSON format
10. import the results back to Jira
Xray + Jira Some IDE Cl tool SpecFlow
I (e.g. Visual Studio, VSCode) 1 1
: I I I
1. Define story I I I
I I |
| 2. Describe Scenarios and Background in a .feature file I I
| | |
| : | |
I 3. Write s automation code I I
I I |
1 4. Commit feature and code to | |
I Git/SVN |
I 5. Checkout code from Git/SVN I
| 6. Synchronize/Import feature to Xray I
|
|
|
|

Note that steps (5-10) performed by the CI tool are all automated, obviously.

To import .features to Jira we can either use the REST API or a Cl tool. To export tagged .features from Jira, we can do it directly from Jira, by the REST
API or using a ClI tool.

{D Learn more

Please check the tutorial Testing using Cucumber in Java which showcases this flow for Cucumber+Java and adapt it accordingly to the
SpecFlow use case.

https://docs.getxray.app/display/XRAY630/Testing+using+Cucumber+in+Java

FAQ and Recommendations

Please see this page.

References

Code used in this tutorial, along with some auxiliary scripts
SpecFlow documentation

Testing in BDD with Gherkin based frameworks (e.g. Cucumber)
Automated Tests (Import/Export)

Exporting Cucumber Tests - REST
https://github.com/SpecFlowOSS/SpecFlow-Examples

https://docs.getxray.app/pages/viewpage.action?pageId=97650410#TestinginBDDwithGherkinbasedframeworks(e.g.Cucumber)-Commonproblems
https://github.com/Xray-App/tutorial-csharp-specflow
https://specflow.org/getting-started/
https://docs.getxray.app/pages/viewpage.action?pageId=97650410
https://docs.getxray.app/pages/viewpage.action?pageId=97649551
https://docs.getxray.app/display/XRAY630/Exporting+Cucumber+Tests+-+REST
https://github.com/SpecFlowOSS/SpecFlow-Examples

	Testing using SpecFlow and Gherkin scenarios in C#

