Testing using WebDriverlO and Cucumber in JavaScript

® Overview
® Requirements
® Description
© Using Jira and Xray as master
© Using Git or other VCS as master
® FAQ and Recommendations
® References

Overview

In this tutorial, we will create Ul tests as Cucumber Scenario(s)/Scenario Outline(s) and use WebDriverlO to implement the tests in JavaScript.

® code is available in GitHub

Requirements

® nodejs
® WebDriverlO

Description

For the purpose of this tutorial, we'll use a dummy website provided by Heroku. In our case, it contains just a few pages to support login features which we
will be testing.

To start using WebDriverlO please follow the Get Started documentation.

WebDriverlO provides a client that after being installed will guide you through bootstrapping a Hello World test suite into your project, for this tutorial we will
use the code generated by this tool for simplicity (with page objects).

The test consists in validating the login feature (with valid and invalid credentials) of the demo site, for that we have created a feature file that will have the
description of the test supported by a base page that contains all methods and functionality that is shared across all page objects, a login page, that will
extend the base page, that will have all the methods for interacting with the login page and a result page that will have the methods to interact in the page
that is loaded after the login operation.

We have followed the documentation and executed the command to install the WebDriverlO test runner:

npminstall @wio/cli

Then we answered a series of questions that will define the code to be generated using:

npx wdio config

The output of the questionnaire will look like this:

https://webdriver.io/
https://the-internet.herokuapp.com/login
https://webdriver.io/docs/gettingstarted
https://the-internet.herokuapp.com/login
https://webdriver.io/docs/gettingstarted
https://github.com/Xray-App/tutorial-js-webdriverio-cucumber

? Where is your automation backend located? On my local machine
Which framework do you want to use? cucumber
Do you want to use a compiler? No!
Where are your feature files located? ./features/¥*/*.feature
Where are your step definitions located? ./features/step-definitions/steps.js

Do you want to use page objects (https://martinfowler.com/bliki/PageObject.html)? Yes
Where are your page objects located? ./features/pageobjects/*¥/*.js

Which reporter do you want to use? spec

Do you want to add a service to your test setup? chromedriver

?
?
?
?
? Do you want WebdriverI0 to autogenerate some test files? Yes
?
?
?
?
? What is the base url? http://localhost

This will automatically generate the following files:

.Ipageobjects/page.js

const Page = require('./page');

| *x*

* sub page containing specific selectors and nethods for a specific page

*/
cl ass Logi nPage extends Page {
/*-}r
* define selectors using getter nethods
*/
get inputUsernanme () { return $('#usernane') }
get inputPassword () { return $(' #password') }
get btnSubmit () { return $('button[type="submit"]"') }
/**
* a method to encapsul e automation code to interact with the page
* e.g. to login using usernane and password
*/
async |l ogin (usernane, password) {
await (await this.inputUsernane).setVal ue(usernane);
await (await this.inputPassword).setVal ue(password);
await (await this.btnSubmt).click();
}
/**
* overwite specifc options to adapt it to page object
*/
open () {
return super.open('login');
}
}

nodul e. exports = new Logi nPage();

./pageobjects/login.page.js

| **

* mai n page object containing all nethods, selectors and functionality
* that is shared across all page objects

*
/
nmodul e. exports = cl ass Page {
/*-k
* Opens a sub page of the page
* @aram path path of the sub page (e.g. /path/to/page. htm)
*
/
open (path) {
return browser.url (“https://the-internet.herokuapp.com ${path}")
}
}

./pageobjects/secure.page.js

const Page = require('./page');

/**
* sub page containing specific selectors and nethods for a specific page
*/
cl ass SecurePage extends Page {
/**

* define selectors using getter nethods
*/
get flashAlert () { return $('#flash') }
}

nmodul e. exports = new Secur ePage() ;

And a feature file where we describe the tests:

login.feature

Feature: As a user, | can log into the secure area
Scenario Qutline: As a user, | can log into the secure area
Gven | amon the |login page
Wien | login with <usernane> and <password>

Then | shoul d see a flash nmessage sayi ng <nessage>

Exanpl es:
| usernane | password | nmessage
| tomsmth | SuperSecretPassword! | You |logged into a secure area!
| foobar | barfoo | Your usernane is invalid!

With the respective code behind

Jstep-definitions/steps.js

const { Gven, Wien, Then } = require(' @ucunber/cucunber');

const Logi nPage = require('../pageobjects/|ogin.page');
const SecurePage = require('../pageobjects/secure. page');

const pages = {
| ogi n: Logi nPage
}

Gven(/”~l amon the (\wt+) page$/, async (page) => {
awai t pages[page] . open()

1)

When(/ ™l login with (\w+) and (.+)$/, async (usernane, password) => {
awai t Logi nPage. | ogi n(user nane, password)

1)

Then(/”1 should see a flash nessage saying (.*)$/, async (nessage) => {
awai t expect (SecurePage. fl ashAl ert).toBeExi sting();
awai t expect (Secur ePage. fl ashAl ert) .t oHaveText Cont ai ni ng(message) ;

1)

The last two steps to have everything configured is to define that we will use the CucumberJS framework, for that we execute the following command:

npminstall wdi o-cucunberjs-json-reporter --save-dev

And in the wdio.conf.js we have added, in the reporters area, the following CucumberJS definition:

Jwdio.conf.js

reporters: ['spec',
[" cucunberjs-json', {

jsonFol der: '.tnp/json/',

| anguage: '

en',
I
1,

Once the code is implemented (and we will make it fail on purpose on one test, to show the failure reports), it can be executed with the following command:

npx wdio run ./wdio.conf.js

The results are immediately available in the terminal

[chrome 91.0. . X #0-0] Running: chrome (v91.0.4472.101) on mac 0s X

[chrome 91.0. 101 mac os x #0-0] Session ID: e8e95c6b49c2e352d7162f4ba3b64217

[chrome 91.0. 101 mac os x #0-0]

[chrome 91.0. .101 mac os x #0-@] » /features/login.feature

[chrome 91.0. .101 mac os x #0-0] As a user, I can log into the secure area

[chrome 91.0. .101 mac os x #0-0] As a user, I can log into the secure area

[chrome 101 mac os X #2-0] Given I am on the login page

[chrome 1 mac os x #0-0] When I login with tomsmith and SuperSecretPassword!
[chrome 1 mac os x #0-0] Then I should see a flash message saying You logged into a secure area!
[chrome 91.0. .101 mac os x #0-0]

[chrome 91.0. .101 mac os x #0-0] As a user, I can log into the secure area

[chrome 91.0. .101 mac os x #0-0] Given I am on the login page

[chrome 91.0. .101 mac os x #0-0] When I login with foobar and barfoo

[chrome 91.0. .101 mac os x #0-0] Then I should see a flash message saying Your username is invalid.
[chrome 91.0. .101 mac os x #0-0]

[chrome 91.0. 101 mac os x #0-0]

[chrome 101 mac os x #0-0]

[chrome 1 mac os x #0-0]

[chrome 1 mac os x #0-@] 1) As a user, I can log into the secure area Then I should see a flash message saying Your username is invalid.
[chrome 1 mac os x #0-0]

[chrome 91.0. .101 mac os x #0-0]

[chrome 91.0. .101 mac os x #0-0]

[chrome 91.0. .101 mac os x #0-0]

[chrome 91.0. .101 mac os x #0-0]

[chrome 91.0. .101 mac os x #09-0]

[chrome 91.0. .101 mac os x #09-0]

[chrome 91.0. .101 mac os x #0-0]

[chrome 101 mac os x #0-0]

[chrome 1 mac os x #0-0]

[chrome 1 mac os x #0-0]

[chrome 1 mac os x #0-0]

[chrome 91.0. .101 mac os x #0-0]

Spec Files: , 1 total (100% completed) in 00:00:18

In case you need to interact with the Xray REST API at low-level using scripts (e.g. Bash/shell scripts), this tutorial uses auxiliary files that will handle those
interactions.

Example of cloud_auth.json used in this tutorial

- export_features.sh

- inport_features.sh

- inmport_results.sh

- run_all _git_workflow sh

- run_al | _standard_wor kfl ow. sh

Now we need to decide which workflow to use: do you want to use Xray/Jira as the master for writing the declarative specification (i.e. the Gherkin based
Scenarios), or do you want to manage those outside using some editor and store them in Git, for example?

@ Learn more

Please see Testing in BDD with Gherkin based frameworks (e.g. Cucumber) for an overview of the possible workflows.

The place that you'll use to edit the Cucumber Scenarios will affect your workflow. There are teams that prefer to edit Cucumber Scenarios in
Jira using Xray, while there are others that prefer to edit them by writing the .feature files by hand using some IDE.

Using Jira and Xray as master
This section assumes using Xray as master, i.e. the place that you'll be using to edit the specifications (e.g. the scenarios that are part of .feature files).
The overall flow would be something like this:

1. create Scenario/Scenario Outline as a Test in Jira; usually, it would be linked to an existing "requirement"/Story (i.e. created from the respective
issue screen)

. implement the code related to Gherkin statements/steps and store it in Git, for example

. generate .feature files based on the specification made in Jira

. checkout the code from Git

. run the tests in the CI

. import the results back to Jira

OO~ WN

Usually, you would start by having a Story, or similar (e.g. "requirement"), to describe the behavior of a certain feature and use that to drive your testing.

If you have it, then you can just use the "Create Test" on that issue to create the Scenario/Scenario Outline and have it automatically linked back to the
Story/"requirement.”

Otherwise, you can create the Test using the standard (issue) Create action from Jira's top menu.

https://docs.getxray.app/pages/viewpage.action?pageId=97650410

Xray Tutorials| / XT-225
Demo Login feature

Edit Q Comment Assign More v
~ Details
Type: [story
Priority: O Trivial
Labels: None

Regquirement Status:

v Description

Click to add description

v Test Coverage

No Tests were found testing the requirement.

~ Attachments

Structure

In this case, we'll create a Cucumber Scenario.

In Progress Done Admin v

Status:

Resolution:

G) Drop files to attach, or browse.

(View Workflow)
Unresolved

Create Test Create Sub-Test Execution

We need to create the Test issue first and fill out the Gherkin statements later on in the Test issue screen.

Create Issue £ Configure Fields ~

Project* Xray Tutorials (XT) v

Issue Type* [Test ¥

General TestDetails TestSets Pre-Conditions TestPlans Link Issues

Summary® Test login feature (&
Descripion gev B I U Av £v @v [fv = = @v +v 2
Visual Text e~ o
Reporter* Xpand IT Admin
Start typing to get a list of possible matches.
Assignee (?) Automatic >

Assign to me
Fix Version/s None
Priority O Trivial v
Componentf/s None

Attachment Gf} Drop files to attach, or browse.

(CJCreate another Cancel

Create Issue

£} Configure Fields ~
Project [@ Xray Tutorials (XT) v
Issue Type* [Test v
General TestDetails TestSets Pre-Conditions TestPlans Linklssues
Test Type [EFAYELIED
Cucumber
Generic
Steps
i Grid v el -+ Add Step
Action®*
Styev B I U Av £+ @~ [Hv = = Ov +v~
b

Visual Text

Data

Enter value...

Expected Result

(CCreate another Cancel

After the Test is created it will impact the coverage of related "requirement,” if any.

The coverage and the test results can be tracked on the "requirements” side (e.g. user story). In this case, you may see that coverage changed from being
UNCOVERED to NOTRUN (i.e. covered and with at least one test not run).

Xray Tutorials / XT-225
Demo Login feature

o]

Edit Q Comment Assign More v ToDo InProgress Done Admin v

v Details
Type: [story Status: ECEE) (view Workflow)
Priority: O Trivial Resolution: Unresolved
Labels: None

Requirement Status: 4——

~ Description
Click to add description

v Test Coverage

Create Test Create Sub-Test Execution

TEST COVERAGE FOR THE FOLLOWING AMALYSIS SCOPE

Scope: Version; Version: None - latest execution; Environment: All Environments ~

= Filter(s)
B~ Show entries Columns -
P Status Resolution A Key Summary Test Runs Test Status
0o o To Do Unresolved XT-226 Test Login feature _> [Tobo |
Showing 1to 1 of 1 entries First Previous |1 MNext Last

Additional tests could be created and eventually linked to the same Story or linked to another one (e.g. logout).

The related statement's code is managed outside of Jira and stored in Git, for example.

In our source code, test code is stored under st eps- def i ni ti ons directory, which itself can contain several other directories or files. In this case, we've
only one referring to the login feature:

Jstep-definitions/steps.js

const { Gven, Wien, Then } = require(' @ucunber/cucunber');

const Logi nPage = require('../pageobjects/|ogin.page');
const SecurePage = require('../pageobjects/secure. page');

const pages = {
| ogi n: Logi nPage
}

Gven(/”~l amon the (\wt+) page$/, async (page) => {
awai t pages[page] . open()

1)

When(/ ™l login with (\w+) and (.+)$/, async (usernane, password) => {
awai t Logi nPage. | ogi n(user nane, password)

1)

Then(/”1 should see a flash nessage saying (.*)$/, async (nessage) => {
awai t expect (SecurePage. fl ashAl ert).toBeExi sting();
awai t expect (Secur ePage. fl ashAl ert) .t oHaveText Cont ai ni ng(message) ;

1

After((scenario) => {
const path = '.tnp/screenshots/Error.png';
if(scenario.result.status == 6){

browser . saveScr eenshot (pat h);
const cucunberJson = require(' wdi o-cucunberjs-json-reporter').default;
const data = fs.readFileSync(path);

if (data) {
const base64lmage = Buffer.fron(data, 'binary').toString('base64')
cucunber Json. att ach(base64l nage, 'inage/png');

1)

Notice that we have added an After scenario that will be executed after each scenario. After validating that an error occurred it will take a screenshot and

attach it to the report.

You can then export the specification of the test to a Cucumber .feature file via the REST API, or the Export to Cucumber Ul action from within the Test

/Test Execution issue or even based on an existing saved filter. A plugin for your CI tool of choice can be used to ease this task.
So, you can either:

® use the Ul

Xray Tutorials / XT-226
Test Login feature

Edit Q Comment Assign ToDo InProgress Done Admin

¥ Details Log wark
Type: B Test Agile Board Status: [EELTD (view Workflow)
Priority: Q Trivial Rank to Top Resolution: Unresolved
Labels: None

Rank to Bottom

~ Description Archive

Click to add description §

Attach files
. Attach Screenshot

v Test Details

Type: Cucumber | Voters

Scenario Type: Scenario Stop watching

. Watchers
Scenario: Given I an

When I 10§ reate sub-task H <password>
Then I shg ge saying <messages
Convert to sub-task

Exampl)

| | Move | message I

M Link tPassword! | You logged into a secure area! |

| | Your username is invalid! I
Clone

7 Edi

Labels ~Z_Edit Steps
Delete

<

Pre-Conditions
This test is not associated with Pre-q Reset TestRunStatus

Create Pre-Condition Assaciate Pre-Conditions
Export to Cucumber

Export Test to XML

<

Test Sets

This test is not associated with Test { Export Test Runs to CSV
e Associate Test Sets
o]

® use the REST API (more info here)

o example of a shell script to export/generate .features from Xray

#!/ bi n/ bash

JI RA_BASEURL=ht t ps: //192. 168. 2. 168
JI RA_USERNAME=admni n

JI RA_PASSWORD=adm n

KEYS=" XT- 142"

rm-f features.zip
curl -u $JI RA_USERNAME: $JI RA_PASSWORD "$JI RA_BASEURL/rest/raven/ 2. 0/ export/test?

keys=$KEYS&f z=true" -o features.zip
unzip -o features.zip -d features

® use one of the available CI/CD plugins (e.g. see an example of Integration with Jenkins)

We will export the features to a new directory named f eat ur es/ on the root folder of your project.

After being exported, the created .feature(s) will contain references to the Test issue key, eventually prefixed (e.g. "TEST_") depending on an Xray global
setting, and the covered "requirement" issue key, if that's the case. The naming of these files is detailed in Export Cucumber Features.

https://docs.getxray.app/display/XRAY630/Integration+with+Jenkins
#
#
https://docs.getxray.app/display/XRAY630/Export+Cucumber+Features

features/1_XT-225.feature

@REQ _XT- 225
Feature: Login feature

@EST_XT- 226
Scenario: Test Login feature
Scenario Qutline: As a user, | can log into the secure area
Gven | amon the |ogin page
When | login with <usernane> and <password>
Then | should see a flash nessage sayi ng <nessage>
Exanpl es:
| username | password |
nessage
| tomsmith | SuperSecretPassword! | You logged into a secure
area! |
| foobar | barfoo | Your usernane is
invalid.

To run the tests and produce Cucumber JSON reports(s), we can either use t he same command as before.

npx wdio run ./wdio.conf.js

This will produce one results file that will hold the test results.
The CucumberJson reporter does not produce reports containing the screenshots embedded.

However, we have added an After scenario to do so, but you can use the HTML or Cucumber reporter that allows you to add those as you can find more
info here.

After running the tests, results can be imported to Xray via the REST API, or the Import Execution Results action within the Test Execution, or by using
one of the available CI/CD plugins (e.g. see an example of Integration with Jenkins).

import_results.sh

#!/ bi n/ bash

JI RA_BASEURL=htt ps://192. 168. 0. 168
JI RA_USERNAME=adni n

JI RA_PASSWORD=admni n

curl -H "Content-Type: application/json" -X POST -u $JI RA_USERNAVME: $J1 RA_PASSWORD --data @.tnp/json/l ogin-
feature.json" $JI RA_BASEURL/rest/raven/2.0/inport/execution/ cucunber

https://webdriver.io/docs/rpii-wdio-html-reporter
https://docs.getxray.app/display/XRAY630/Integration+with+Jenkins

@ Which Cucumber endpoint/"format” to use?
To import results, you can use two different endpoint/"formats" (endpoints described in Import Execution Results - REST):

1. the "standard cucumber" endpoint
2. the "multipart cucumber" endpoint

The standard cucumber endpoint (i.e. /import/execution/cucumber) is simpler but more restrictive: you cannot specify values for custom fields
on the Test Execution that will be created. This endpoint creates new Test Execution issues unless the Feature contains a tag having an issue
key of an existing Test Execution.

The multipart cucumber endpoint will allow you to customize fields (e.g. Fix Version, Test Plan) if you wish to do so, on the Test Execution that
will be created. Note that this endpoint always creates new Test Executions (as of Xray v4.2).

In sum, if you want to customise the Fix Version, Test Plan and/or Test Environment of the Test Execution issue that will be created, you'll have
to use the "multipart cucumber" endpoint.

A new Test Execution will be created (unless you originally exported the Scenarios/Scenario Outlines from a Test Execution).

Xray Tutorials / XT-153

Execution results [1624004965566]

Edit Q Comment Assign More ~ ToDo InProgress Done Admin v

v Details
Type: [Test Execution Status: (View Workflow)
Priority: O Trivial Resolution: Unresolved
Labels: None
Test Plan: None
Test Environments: None

~ Description
Click to add description

v Tests

Overall Execution Status

1 FAIL

Total Tests: 1

= Filter(s)
Ev Apply Rank Show entries Columns ~
v Rank Key Summary Test Type #Req #Def Assignee Status
O 1 XT-142 login feature Cucumber 1 Q Xpand IT Admin “ >
Showing 1to 1 of 1 entries First Previous . Next Last

The tests have failed (on purpose).

The execution screen details of the Test Run will provide overall status information and Gherkin statement-level results, therefore we can use it to analyze
the failing test.

https://docs.getxray.app/display/XRAY630/Import+Execution+Results+-+REST

Xray Tutorials / XT-153

Execution results [1624004965566]

Edit Q Comment Assign More v ToDo InProgress Done Admin v
~ Details ~ Xporter
Type: 3 Test Execution Status: ECLTD (view Workflow) Template
Priority: O Trivial Resolution: Unresolved
Labels: None Output format
Test Plan: None
Test Environments: None
~ Description v People
Click to add description Assignee:
Reporter:
v Tests
Votes:
+ Add ~ Watchers:
Overall Execution Status
v Dates
Created:
1 FAIL Updated:
Total Tests: 1 v Agile
. View on Board
= Filter(s)
B~ Apply Rank Show entries Columns
v Rank Key Summary Test Type #Req #Def Assignee Status
[m] 1 XT-142 login feature Cucumber 1 0 Xpand IT Admin [rar |
Showing 1to 1 of 1 entries First Previous . £ Execution Details
EXECUTE INLINE
v Attachments PASS
Xray Tutorials [Test Execution: XT-1563 [Test: XT-142
o !] Import Execution Results Export to Cucumber . Return to Test Execution
login feature
Test Details ~
Test Type: Cucumber
Scenario Type: Scenario Outline
Scenario: 1 Given I am on the login page
2 When I login with <username> and <passwords>
3 Then I should see a flash message saying <message>
4
5 Examples:
6 | username | password | message |
7 | tomsmith | SuperSecretPassword! | You logged into a secure area! |
8 | foobar | barfoo | Your username is invalid. |
Examples ~
<username> <password> <message> Duration Status
» tomsmith SuperSecretPassword! You logged into a secure area! 3861.000 ms m
» foobar barfoo Your username is invalid. 10952.000
ms

A given example can be expanded to see all Gherkin statements and, if available, it is possible to see also the attached stack trace.

Examples A~

<username> <password> <message> Duration Status
tomsmith SuperSecretPassword! You logged into a secure area! 3861.000 ms “
w foobar barfoo Your username is invalid. 10952.000 “

ms

Steps

Before 2.000 ms “

Given | am on the login page 166.000 ms “

‘When | login with foobar and barfoo 484.000 ms “

Then | should see a flash message saying Your username is invalid. 10036.000 “
ms

Error: Expect $(#flash™) to have text containing

- Expected - 1
+ Received + 2

- Your username is invalid.
+ Your username is invalid!
+ %

at World.<anonymous> (/Users/cristi ha/ /Projects/ ber_webdriverio/features/step-definitions/steps.js:22:41)

at processTicksAndRejections (internal/process/task_gueues.js:93:5)

at World.executeAsyne (/Users/cristianocunha/Documents/Projects/cucumber webdriverio/node modules/@wdio/utils/build/shim.js:136:16)

at World.testFrameworkFnWrapper (/Users/cristianocunha/Documents/Projects/cucumber webdriverio/node modules/@wdio/utils/build/test-framework/testFnWrapper.js:52:18)

After ©(1) 263.000ms

After 1.000 ms

Note: in this case, the bug was on the Scenario Outline example which was expecting an invalid message.
Results are reflected on the covered item (e.g. Story). On its issue screen, coverage now shows that the item is NOK based on the latest testing results,
this can also be tracked within the Test Coverage panel bellow.

Xray Tutorials / XT-143
login feature

o)

Edit Q Comment Assign More v ToDo InProgress Done Admin v

~ Details
Type: I story Status: (View Workflow)
Priority: Q Trivial Resolution: Unresolved
Labels:

requirement Status: | (D 4—

<

Description
Click to add description

~ Test Coverage

Create Test Create Sub-Test Execution

TEST COVERAGE FOR THE FOLLOWING ANALYSIS SCOPE

Scope: Version; Version: None - latest execution; Environment: All Environments ~ m
= Filter(s)
B~ Show [10 v| entries Columns -
P Status Resolution A Key Summary Test Runs Test Status

o o T0 DO Unresolved XT-142 login feature 0 _> “

Showing 1to 1 of 1 entries First Previous . Next Last

Using Git or other VCS as master

You can edit your .feature files using your IDE outside of Jira (eventually storing them in your VCS using Git, for example) alongside the remaining test
code.

In any case, you'll need to synchronize your .feature files to Jira so that you can have visibility of them and report results against them.

The overall flow would be something like this:

. look at the existing "requirement"/Story issue keys to guide your testing; keep their issue keys

specify Cucumber/Gherkin .feature files in your IDE and store it in Git, for example

. implement the code related to Gherkin statements/steps and store it in Git, for example
import/synchronise the .feature files to Xray to provision or update corresponding Test entities
export/generate .feature files from Jira, so that they contain references to Tests and requirements in Jira
. checkout the WebDriverlO related code from Git

. run the tests in the ClI

. import the results back to Jira

ONOUTAWN P

Usually, you would start by having a Story, or similar (e.g. "requirement”), to describe the behaviour of a certain feature and use that to drive your testing.

Xray Tutorials| / XT-225
Demo Login feature

Edit Q Comment Assign More v To Do InProgress Done Admin v

v Details
Type: [story Status: (View Workflow)
Priority: O Trivial Resolution: Unresolved
Labels: None

~ Description
Click to add description

v Test Coverage

Create Test Create Sub-Test Execution

No Tests were found testing the requirement.

~ Attachments

G«) Drop files to attach, or browse.

w

Structure Q

Having those to guide testing, we could then move to our code to describe and implement the Cucumber test scenarios.

Test code is stored inside the st ep- def i ni ti ons directory. We also have other directories present, to hold for instance the page object definitions in the
pageobj ect s directory.

In this case, we've organized them as follows:

® step-definitions/steps.js: step implementation files, in JavaScript.

o step-definitions/steps.js
const { Gven, Wien, Then } = require(' @ucunber/cucunber');

const Logi nPage = require('../pageobjects/I|ogin. page');
const SecurePage = require('../pageobjects/secure. page');

const pages = {
I ogi n: Logi nPage
}

Gven(/”~l amon the (\w+) page$/, async (page) => {
awai t pages[page] . open()

1)

When(/”~l login with (\w+) and (.+)$/, async (username, password) => {
awai t Logi nPage. | ogi n(user nane, password)

1)

Then(/”1 should see a flash nessage saying (.*)$/, async (nessage) => {
awai t expect (Secur ePage. fl ashAl ert).toBeExi sting();
awai t expect (SecurePage. fl ashAl ert) .t oHaveText Cont ai ni ng(message) ;

1)

® pageobj ect s: abstraction of different pages, somehow based on the page-objects model
O pageobjects/page.js

/*-}r
* mai n page object containing all methods, selectors and functionality
* that is shared across all page objects
*/
nmodul e. exports = cl ass Page {
/**
* Opens a sub page of the page
* @aram path path of the sub page (e.g. /path/to/page. htm)
*/
open (path) {
return browser.url (“https://the-internet.herokuapp.com ${path}")
}

© pageobjects/login-page.js

const Page = require('./page');

| **

* sub page containing specific selectors and nethods for a specific page

*/
cl ass Logi nPage extends Page {
/**
* define selectors using getter nethods
*/
get inputUsernane () { return $('#usernane') }
get inputPassword () { return $(' #password') }
get btnSubmit () { return $(' button[type="submt"]') }
/**
* a method to encapsul e automation code to interact with the page
* e.g. to login using usernane and password
*/
async | ogin (usernane, password) {
await (await this.inputUsernane).setVal ue(usernane);
await (await this.inputPassword).setVal ue(password);
await (await this.btnSubmt).click();
}
/*-k
* overwite specifc options to adapt it to page object
*/
open () {
return super.open('login');
}
}

nodul e. exports = new Logi nPage();

O pageobjects/secure-page.js

const Page = require('./page');

*
/* sub page containing specific selectors and nethods for a specific page
cI{ass Secur ePage extends Page {

*

/* define selectors using getter nethods

*

gei flashAlert () { return $('#flash') }
}

nodul e. exports = new SecurePage();

® features/| ogi n.feature: Cucumber .feature files, containing the tests as Gherkin Scenario(s)/Scenario Outline(s). Please note that each
"Feature: <..>" section should be tagged with the issue key of the corresponding "requirement"/story in Jira. You may need to add a prefix (e.g.
"REQ_") before the issue key, depending on an Xray global setting.

#

o features/login.feature

@REQ_XT- 225
Feature: Login feature

Scenario: Test Login feature

Scenario Qutline: As a user, | can log into the secure area
Gven | amon the login page
Wien | login with <username> and <passwor d>

Then | should see a flash nessage sayi ng <nessage>

Exanpl es:
| username | password |
nessage
| tomsmith | SuperSecretPassword! | You | ogged
into a secure area! |
| foobar | barfoo | Your usernane

is invalid. |

Before running the tests in the CI environment, you need to import your .feature files to Xray/Jira; you can invoke the REST API directly or use one of the
available plugins/tutorials for Cl tools.

example of a shell script to import/synchronize Scenario(s)/Background(s) from .features to Jira and Xray

#!/ bi n/ bash

JI RA_BASEURL=ht t ps://192. 168. 0. 168
JI RA_USERNAME=admi n

JI RA_PASSWORD=adni n

PROIECT=XT

FI LE=f eat ures. zi p

zip -r $FILE features/ -i *.feature
curl -H "Content-Type: nultipart/formdata” -u $JI RA_USERNAME: $JI RA_PASSWORD - F "fil e=@FI LE" "$J1 RA_BASEURL
/rest/raven/ 1. 0/inport/feature?project Key=$PROQIECT"

@ Please note

Each Scenario of each .feature will be created as a Test issue that contains unique identifiers, so that if you import once again then Xray can
update the existent Test and don't create any duplicated tests.

Afterward, you can export those features out of Jira based on some criteria, so they are properly tagged with corresponding issue keys; this is important
because results need to contain these references.

You can then export the specification of the test to a Cucumber .feature file via the REST API, or the Export to Cucumber Ul action from within the Test
[Test Execution issue or even based on an existing saved filter. A plugin for your CI tool of choice can be used to ease this task.

So, you can either:

® use the Ul

Xray Tutorials / XT-226
Test Login feature

Edit Q Comment Assign ToDo InProgress Done Admin

¥ Details Log wark
Type: B Test Agile Board Status: [EELTD (view Workflow)
Priority: Q Trivial Rank to Top Resolution: Unresolved
Labels: None

Rank to Bottom

<

Description Archive

Click to add description §
Attach files

v Test Details Attach Screenshot

Type: Cucumber | Voters
Scenario Type: Scenario Stop watching
. Watchers
Scenario: Given I an
When I 106 croate sub-task i <password>

Then I shg ge saying <messages
Convert to sub-task

Exampl)

| | Move | message I

M Link tPassword! | You logged into a secure area! |

| | Your username is invalid! I
Clone

7 Edi

Labels ~Z_Edit Steps
Delete

<

Pre-Conditions
This test is not associated with Pre-q Reset TestRunStatus

Create Pre-Condition Assaciate Pre-Conditions
Export to Cucumber

Export Test to XML
~ Test Sets P

This test is not assaciated with Test { Export Test Runs to CSV
e Associate Test Sets
o]

® use the REST API (more info here)

o example of a shell script to export/generate .features from Xray

#!/ bi n/ bash

JI RA_BASEURL=ht t ps: //192. 168. 2. 168
JI RA_USERNAME=admni n

JI RA_PASSWORD=adm n

KEYS=" XT- 142"

rm-f features.zip

curl -u $JI RA_USERNAME: $JI RA_PASSWORD "$JI RA_BASEURL/rest/raven/ 2. 0/ export/test?
keys=$KEYS&f z=true" -o features.zip

unzip -o features.zip -d features

® use one of the available CI/CD plugins (e.g. see an example of Integration with Jenkins)

For ClI only purposes, we will export the features to a new temporary directory named f eat ur es/ on the root folder of your project. Please note that while
implementing the tests, .feature files should be edited inside their respective folder.

After being exported, the created .feature(s) will contain references to the Test issue keys, eventually prefixed (e.g. "TEST_") depending on an Xray global
setting, and the covered "requirement" issue key, if that's the case. The naming of these files is detailed in Export Cucumber Features.

https://docs.getxray.app/display/XRAY630/Integration+with+Jenkins
#
#
https://docs.getxray.app/display/XRAY630/Export+Cucumber+Features

features/1_COM_19.feature

@REQ_XT- 225
Feature: Login feature
@IEST_XT- 226
Scenario Qutline: As a user, | can log into the secure area
Gven | amon the |ogin page
Wien | login with <username> and <password>

Then | should see a flash nessage sayi ng <nessage>

Exanpl es:
username	password	message
tomsmith	SuperSecretPassword!	You logged into a secure area!
foobar	barfoo	Your usernane is invalid.

To run the tests and produce Cucumber JSON reports(s), we will use the following command:

npx wdio run ./wdio.conf.js

This will produce one Cucumber JSON report in . t np/ j son directory per each .feature file.

After running the tests, results can be imported to Xray via the REST API, or the Import Execution Results action within the Test Execution, or by using
one of the available CI/CD plugins (e.g. see an example of Integration with Jenkins).

Example of shell script to import results (e.g. import_results_cloud.sh)

#!/ bi n/ bash

JI RA_BASEURL=ht t ps: // 192. 168. 0. 168
JI RA_USERNAME=adni n
JI RA_PASSWORD=adni n

curl -H "Content-Type: application/json" -X POST -u $JI RA_USERNAME: $J1 RA_PASSWORD --data @.tnp/json/l ogin-
feature.json" $JI RA_BASEURL/ rest/raven/ 2.0/ i nport/execution/ cucunber

@ Which Cucumber endpoint/"format" to use?
To import results, you can use two different endpoints/“formats" (endpoints described in Import Execution Results - REST):

1. the "standard cucumber" endpoint
2. the "multipart cucumber" endpoint

The standard cucumber endpoint (i.e. /import/execution/cucumber) is simpler but more restrictive: you cannot specify values for custom fields
on the Test Execution that will be created. This endpoint creates new Test Execution issues unless the Feature contains a tag having an issue
key of an existing Test Execution.

The multipart cucumber endpoint will allow you to customize fields (e.g. Fix Version, Test Plan) if you wish to do so, on the Test Execution that
will be created. Note that this endpoint always creates new Test Executions (as of Xray v4.2).

In sum, if you want to customize the Fix Version, Test Plan and/or Test Environment of the Test Execution issue that will be created, you'll have
to use the "multipart cucumber" endpoint.

A new Test Execution will be created (unless you originally exported the Scenarios/Scenario Outlines from a Test Execution).

https://docs.getxray.app/display/XRAY630/Integration+with+Jenkins
https://docs.getxray.app/display/XRAY630/Import+Execution+Results+-+REST

Xray Tutorials / XT-153

Execution results [1624004965566]

Edit Q Comment Assign More + ToDo InProgress Done Admin v

v Details
Type: [Test Execution Status: EZED) (view Workflow)
Priority: O Trivial Resolution: Unresolved
Labels: None
Test Plan: None
Test Environments: None

~ Description
Click to add description

v Tests

Overall Execution Status

1 FAIL

Total Tests: 1

= Filter(s)
B~ Apply Rank Show entries Columns +
v Rank Key Summary Test Type #Req #Def Assignee Status
(] 1 XT-142 login feature Cucumber 1 0 Xpand IT Admin “ >
Showing 1to 1 of 1 entries First Previous . Next Last

One of the tests fails (on purpose).

The execution screen details of the Test Run will provide overall status information and Gherkin statement-level results, therefore we can use it to analyse
the failing test.

Xray Tutorials /| Test Execution: XT-163 | Test: XT-142

|Ogin feature !] Import Execution Results Export to Cucumber 4. Return to Test Execution
Test Details ~
Test Type: Cucumber
Scenario Type: Scenario Outline
Scenario: 1 Given I am on the login page
2 When I login with <username> and <passwords>
3 Then I should see a flash message saying <message>
4
5 Examples:
6 | username | password | message |
7 | tomsmith | SuperSecretPassword! | You logged into a secure area! |
8 | foobar | barfoo | Your username is invalid. |
Examples ~
<username> <password> <message> Duration Status
» tomsmith SuperSecretPassword! ‘You logged into a secure area! 3861.000 ms m
» foobar barfoo ‘Your username is invalid. 10952.000 FAIL
Examples A~
<username> <password> <message> Duration Status
» tomsmith SuperSecretPassword! You logged into a secure area! 3861.000 ms “
w foobar barfoo Your username is invalid. 10952.000 “
ms
Steps
gefore 2000ms D
Given | am on the login page 166.000 ms “
‘When | login with foobar and barfoo 484.000 ms “
Then | should see a flash message saying Your username is invalid. 10036.000 “
ms

Error: Expect $(#flash™) to have text containing

- Expected - 1
+ Received + 2

- Your username is invalid.
+ Your username is invalid!

+ %
at World.<anonymous> (/Users/cristi ha/ /Projects/ ber_webdriverio/features/step-definitions/steps.js:22:41)
at processTicksAndRejections (internal/process/task_gueues.js:93:5)
at World.executeAsync (/Users/cristianocunha/ /Projects/ -_webdriverio/node_modules/fwdio/utils/build/shim.js:136:16)
at World.testFrameworkFPnWrapper (/Users/cristi / /Projects/ - webdriverio/node modules/@wdio/utils/build/test-framework/testFnirapper.js:52:18)
Ater o0 zsovoms EEETIEEED
Ater rocoms TN

Results are reflected on the covered item (e.g. Story). On its issue screen, coverage now shows that the item is OK based on the latest testing results, that

can also be tracked within the Test Coverage panel bellow.

Xray Tutorials / XT-143
login feature

Q)

Edit Q Comment Assign More v ToDo InProgress Done Admin v

~ Details
Type: [story Status: (View Workflow)
Priority: Q Trivial Resolution: Unresolved

Labels:
requirement Status: | (D 4—-

~ Description

Click to add description

~ Test Coverage

Create Test Create Sub-Test Execution

TEST COVERAGE FOR THE FOLLOWING AMALYSIS SCOPE

Scope: Version; Version: None - latest execution; Environment: All Environments ~ m
= Filter(s)
B~ Show entries Columns +
P Status Resolution A Key Summary Test Runs Test Status
[l o TO DO Unresolved XT-142 login feature 0 _>
Showing 1to 1of 1 entries First Previous |1 Next Last

If we change the specification (i.e. the Gherkin scenarios), we need to import the .feature(s) once again.

Therefore, in the Cl we always need to start by importing the .feature file(s) to keep Jira/Xray on synch.

FAQ and Recommendations

Please see this page.

References

® WebDriverlO
® WebDriverlO documentation

https://docs.getxray.app/pages/viewpage.action?pageId=97650410#TestinginBDDwithGherkinbasedframeworks(e.g.Cucumber)-Commonproblems
https://webdriver.io/
https://webdriver.io/docs/what-is-webdriverio

	Testing using WebDriverIO and Cucumber in JavaScript

