Testing Flutter (i10S, Android, web, desktop) Applications

Owdnaieywou'll learn
Prerequisites
* ApplicattorHowtadelefine tests using Flutter
* |ImplementRyridbestest and push the test report to Xray
o eUnalickte that the test results are available in Jira
© Widget Test
©_Integration Test
® Integrating with Xray

° APl)
Source-code for this ji@Halication

. = JUnit XML results
¢ codegjs,avgpilable in GitHub

® Tips
® References

Overview

Flutter is an open source framework by Google used for building natively compiled, multi-platform
applications from a single codebase.

Flutter transforms the app development process. Build, test, and deploy mobile, web, desktop, and
embedded apps from a single codebase.

Prerequisites

For this example we will use Flutter, that allows the build, test and deploy of mobile, web and desktop
applications. We will focus in the testing part of the toolkit.

We use the pre-build demo Flutter counter application, that is available in the code and provided by
Flutter, and will define unit tests, widget tests and integrations tests to validate the application.

What you need:
® Flutter installed in your machine

® |f you want to run in an iOS emulator you will need the emulator and XCode installed
® [f you want to run in an Android emulator you will need to install Android Studio also

Application overview

For the purpose of this tutorial we are using the Flutter counter application that consists in application
that will count (and show in the screen) how many times a user pushes the "plus" button.

https://flutter.dev/
https://github.com/flutter/samples/tree/main/provider_counter
https://docs.flutter.dev/testing#unit-tests
https://docs.flutter.dev/testing#widget-tests
https://docs.flutter.dev/testing#integration-tests
https://github.com/flutter/samples/tree/main/provider_counter
https://github.com/Xray-App/tutorial-flutter

Flutter Demo Home Page 2

You have pushed the button this many times:

0

- -

We only made one change in the generated code that is to include a Count er class that will be in
charge of the increment.

main.dart

import 'package:flutter/material.dart';
i nport ' package: ny_app/counter.dart"';

void main() {

runApp(MWApp());
}

cl ass MyApp extends Statel essWdget {
/1 This widget is the root of your application.
@verride
W dget buil d(Buil dContext context) {
return Material App(
title: "Flutter Denp',
t hene: TheneDat a(
/1 This is the theme of your application.

11

/1 Try running your application with "flutter run". You'll see the

/1 application has a blue tool bar. Then, w thout quitting the app,
try

/1 changi ng the primarySwatch bel ow to Col ors.green and then invoke

/1 "hot reload" (press "r" in the console where you ran "flutter
run",

/1 or sinply save your changes to "hot reload" in a Flutter |DE).

// Notice that the counter didn't reset back to zero; the
application

/1l is not restarted.

pri marySwat ch: Col ors. bl ue,

/1 This makes the visual density adapt to the platformthat you run

/1 the app on. For desktop platforns, the controls will be snaller
and

/1 closer together (nmore dense) than on nobile platfornmns.

visual Density: Visual Density.adaptivePl atfornDensity,

)
honme: MyHonePage(title: 'Flutter Denp Honme Page'),
)
}
}

cl ass MyHonePage extends Stateful Wdget {
MyHonmePage({ Key key, this.title}) : super(key: key);

/1 This widget is the hone page of your application. It is stateful,
nmeani ng

/1 that it has a State object (defined below) that contains fields that
af fect

/1 how it |ooks.

/1 This class is the configuration for the state. It holds the val ues
(in this
/] case the title) provided by the parent (in this case the App wi dget)
and
/1 used by the build nethod of the State. Fields in a Wdget subclass are
/1 always marked "final".

final String title;

@verride
_MyHonePageSt ate createState() => _M/HonePageState();
}

cl ass _MyHonePageSt at e ext ends St at e<MyHonePage> {
Counter _counter = new Counter();

void _increnment Counter() {
setState(() {
/1 This call to setState tells the Flutter framework that something
has
/1 changed in this State, which causes it to rerun the build nethod
bel ow
/1 so that the display can reflect the updated values. |If we changed
/1 _counter without calling setState(), then the build method would
not be
/'l called again, and so nothing would appear to happen.
_counter.increnent();
1)
}

@verride
W dget buil d(Buil dContext context) {
/1 This method is rerun every tine setState is called, for instance as
done
/1 by the _increnentCounter nethod above.
I
/1 The Flutter framework has been optinized to make rerunning build
met hods
/1 fast, so that you can just rebuild anything that needs updating
rat her
/1 than having to individually change instances of wi dgets.
return Scaffol d(
appBar: AppBar (
/1 Here we take the value fromthe M/HonmePage object that was
created by
/1 the App.build nethod, and use it to set our appbar title.
title: Text(w dget.title),
)
body: Center (
/1 Center is a layout widget. It takes a single child and
positions it
/1 in the mddle of the parent.
child: Col um(
/1 Colum is also a layout widget. It takes a list of children
and
/1 arranges themvertically. By default, it sizes itself to fit

Andr oi d

Code)

and
to

verti cal

11
11
11
11

11
11
11
11
11
11

11
11

children horizontally, and tries to be as tall as its parent.

I nvoke "debug painting" (press "p" in the console, choose the
"Toggl e Debug Paint" action fromthe Flutter Inspector in

Studi o, or the "Toggle Debug Paint" conmmand in Visual Studio
to see the wireframe for each w dget.

Col um has various properties to control how it sizes itself
how it positions its children. Here we use nmi nAxi sAl i gnnent
center the children vertically; the main axis here is the

axi s because Columms are vertical (the cross axis would be
hori zontal).

mai nAxi sAl i gnnent: Mai nAxi sAl'i gnent . center,
children: <W dget>[

Text (
' You have pushed the button this nany times:"',
)
Text (
_counter.getValue().toString(),
/1 Provide a Key to this specific Text widget. This allows
/1 identifying the widget frominside the test suite,
/1 and reading the text.
key: Key('counter'),
styl e: Theme. of (cont ext) .t ext Thene. headl i ne4,

floatingActi onButton: FloatingActionButton(
/1 Provide a Key to this button. This allows finding this
/1 specific button inside the test suite, and tapping it.

),
met hods.
)
}
}

key:
onPr
t ool
chil
/1

Key('increment'),
essed: _increnent Counter,
tip: "lIncrement',
d: lcon(lcons. add),
This trailing conma nmakes auto-formatting nicer for build

The Count er class will have ani ncrenent (), decrenent () and get Val ue() methods available:

counter.dart

class Counter {
int val ue

= 0;

void increment () => val ue++;

voi d decrenent() => val ue--;

int getValue() => val ue;

Implementing tests

Flutter allows several types of tests, such as:
® Unit tests, that validate a single function, method or class.
® Widget tests, that validate a single widget (referred as component tests in other Ul frameworks).
® Integration tests, that validate a complete application or a large part of an application.

If you have doubts regarding Flutter and Flutter tests please check the documentation.

For the purpose of this tutorial we have defined one test of each type to demonstrate how we can
integrate those with Xray.

Unit Test

Unit tests are the closest ones to the code and they validate a unit of code, in this case a method: Count
er.lncrement ()

These tests are executed with the build and do not require the application to be running.

unit_test.dart

/1 1nmport the test package and Counter class
i mport ' package: my_app/ counter.dart’;
inport 'package:test/test.dart’;

void main() {
test (' Counter value should be incremented , () {
final counter = Counter();

counter.increnment();

expect (counter. get Val ue(), 1);
IOF
}

We are calling the method directly and validating that the value was incremented.

Once the code is done we execute it using the following command:

flutter test test/unit_test.dart

In order to integrate with Xray we want to extract the Junit report, for that flutter needs to use the j uni t r
eport Dart package. We need to specify it in the execution command that we are going to generate a
Junit report, the execution command will be:

flutter pub get junitreport

export PATH="$PATH": " $HOVE/ . pub- cache/ bi n"

flutter pub gl obal activate junitreport
junitReportFile="./junit-unit-report.xm"

flutter test --nachine test/unit_test.dart | tojunit --output
$j uni t ReportFile

The first three lines are there to install and activate the package, the last two lines will execute the tests
and generate the "j uni t-uni t-report.xm "

In the report we will find the result of the tests.

https://docs.flutter.dev/testing#unit-tests
https://docs.flutter.dev/testing#widget-tests
https://docs.flutter.dev/testing#integration-tests
https://docs.flutter.dev/
https://docs.flutter.dev/testing
https://docs.flutter.dev/

junit-unit-report.xml

<?xm version="1.0" encodi ng="UTF-8"?>
<testsuites>
<testsuite errors="0" failures="0" tests="1" ski pped="0" name=". Users.
cristianocunha. Docunents. Projects.flutter.SF_flutter_deno. my_app.test.
unit" tinmestanp="2022-10-12T08: 25: 01" >
<properties>
<property name="pl atfornt val ue="vni'/>
</ properties>
<t estcase cl assname=". Users. cri sti anocunha. Docunents. Projects.flutter.
SF_flutter_deno. my_app.test.unit" name="Counter val ue should be
increnmented" tine="0.027"/>
</testsuite>
</testsuites>

Widget Test

The next tests we have defined are the widget tests, tests that will validate a widget (component), for that
we have defined the following test:

widget_test.dart

/1 This is a basic Flutter widget test.

/1

/1 To performan interaction with a widget in your test, use the

W dget Test er

/1 utility that Flutter provides. For exanple, you can send tap and scroll
/1 gestures. You can al so use Wdget Tester to find child wi dgets in the
wi dget

I/l tree, read text, and verify that the values of wi dget properties are
correct.

inport 'package:flutter/material.dart"';
inmport 'package:flutter_test/flutter_test.dart";

inport 'package: ny_app/ main.dart';

void main() {
test Wdget s(' Counter increnents snoke test', (WdgetTester tester) async
{
/1 Build our app and trigger a frane.
await tester.punpW dget (MyApp());

/1 Verify that our counter starts at O.
expect (find.text('0"), findsOneWdget);
expect (find.text('1"), findsNothing);

/1 Tap the '+ icon and trigger a frane.
await tester.tap(find.bylcon(lcons.add));
await tester.punp();

/1 Verify that our counter has increnented.
expect (find.text('0"), findsNothing);
expect (find.text('1"), findsOneWdget);

IOF

Flutter have available special classes to assist on the validation of widgets, the t est W dget s()
function allows to define a widget test and creates W dget Test er to work with.

We use the punpW dget () method of the W dget Test er to build and render our widget (MyApp), next
we validate that the application will start up showing 0 in the counter.

We then tap in the plus icon and validate that the counter have now 1.

The widget tests loads a specific widget and, usually, do not require the application to be executed, if
your widget depends on other widgets or resources they must be initialized also. In our case our counter
application is simple enough that does no have any dependency.

Once the code is ready we execute the tests using the following command:

junitReportFile="./junit-w dget-report.xm"
flutter test --machine test/w dget_test.dart | tojunit --output
$j uni t ReportFile

The JUnit report is generated and look like the below one.

junit-widget-report.xml

<?xm version="1.0" encodi ng="UTF-8"?>
<testsuites>
<testsuite errors="0" failures="0" tests="1" ski pped="0" nanme=". Users.
cristianocunha. Docunents. Projects.flutter.SF_flutter_deno. my_app.test.
wi dget" tinmestanp="2022-10-12T08: 25: 16" >
<properties>
<property name="pl atform' val ue="vni'/>
</ properties>
<testcase classnane=".Users. cristianocunha. Docunents. Projects.flutter.
SF_flutter_denp. ny_app. test.w dget" name="Counter increnents snoke test"
time="1.067"/>
</testsuite>
</testsuites>

Integration Test

The next level of tests are the integration tests and the way we will execute those tests will vary
depending on the platform you are testing against. The goal of these tests is to verify that all the widgets
and services being tested together work as expected.

As we want to target an Android device we have also installed Android Studio so that we have emulators
available. Before executing the Integration Tests we need to start the emulator, please check Flutter
documentation on Integration Tests to have more details about this.

Our Integration Test will initialize | nt egr at i onTest W dget sFl ut t er Bi ndi ng, that is a singleton
service that executes tests on a physical device, and use W dget Test er to interact and test widgets.
This test will follow the same approach as the Widget Tests but now we are executing the application in a
device and run the tests against it.

https://developer.android.com/studio/intro
https://docs.flutter.dev/testing/integration-tests

integration_test.dart

inmport 'package:flutter_test/flutter_test.dart';
inport 'package:integration_test/integration_test.dart";

import ' package: my_app/ mai n.dart' as app;

void main() {
I ntegrationTest Wdget sFl utterBinding.ensurelnitialized();

group('end-to-end test', () {
test Wdgets('tap on the floating action button, verify counter',
(tester) async {
app. mai n();
awai t tester.punpAndSettle();

/1 Verify the counter starts at O.
expect (find.text('0"), findsOneWdget);

/1 Finds the floating action button to tap on.
final Finder fab = find.byTooltip('lIncrement');

/1 Enulate a tap on the floating action button.
await tester.tap(fab);

/1 Trigger a frame.
awai t tester.punpAndSettle();

/1 Verify the counter increments by 1.
expect (find.text('1"), findsOneWdget);
1)
IOF

To execute the test run a command that will execute the application on the target device and perform the
tests against it.

junitReportFile="./junit-integration-report.xm"
flutter test --machine integration_test | tojunit --output $junitReportFile

Remember that you need to have the emulator or driver running before executing the tests, please
check more information here.

This command will also generate a JUnit report as we can see below.

https://docs.flutter.dev/testing/integration-tests

junit-widget-report.xml

<?xm version="1.0" encodi ng="UTF-8"?>
<testsuites>
<testsuite errors="0" failures="0" tests="1" ski pped="0" name=". Users.
cristianocunha. Docunents. Projects.flutter.SF_flutter_deno. ny_app.
integration_test.integration" tinestanp="2022-10-12T14:14:34">
<properties>
<property name="pl atfornt val ue="vni'/>
</ properties>
<t estcase cl assname=". Users. cri sti anocunha. Docunents. Projects.flutter.
SF flutter_deno. my_app.integration_test.integration" nane="end-to-end test
tap on the floating action button, verify counter" time="1.61"/>
</testsuite>
</testsuites>

Integrating with Xray

As we saw in the above example, where we are producing JUnit reports with the result of the tests, it is
now a matter of importing those results to your Jira instance. You can do this by simply submitting
automation results to Xray through the REST API, by using one of the available CI/CD plugins (e.g. for
Jenkins) or using the Jira interface to do so.

API

API

Once you have the report file available you can upload it to Xray through a request to the REST API
endpoint for JUnit. To do that, follow the first step in the instructions in v1 or v2 (depending on your
usage) to obtain the token we will be using in the subsequent requests.

Authentication

The request made will look like:

curl -H "Content-Type: application/json" -X POST --data '{ "client_id":
"CLIENTID', "client_secret": "CLIENTSECRET" }' https://xray.cloud.getxray.
app/ api / vl/ aut henticate

The response of this request will return the token to be used in the subsequent requests for
authentication purposes.

JUnit XML results

Once you have the token we will use it in the API request with the definition of some common fields on
the Test Execution, such as the target project, project version, etc.

curl -H "Content-Type: text/xm" -X POST -H "Authorization: Bearer
$t oken" --data @junit-unit-report.xm " https://xray.cloud. getxray. app/ api
/v2/inport/execution/junit?project Key=XT&t est Pl anKey=XT- 582

https://docs.getxray.app/display/XRAYCLOUD/Import+Execution+Results+-+REST#ImportExecutionResultsREST-JUnitXMLresults
https://docs.getxray.app/display/XRAYCLOUD/Import+Execution+Results+-+REST#ImportExecutionResultsREST-JUnitXMLresults
https://docs.getxray.app/display/XRAYCLOUD/Authentication+-+REST
https://docs.getxray.app/display/XRAYCLOUD/Authentication+-+REST+v2

With this command, you will create a new Test Execution in the referred Test Plan with a generic

summary and one test with a summary based on the test name.

B xrse

tutorial-flutter

Description
Adda descrition

Tests

@ ach @) Create sublask

BTN O o erecons

Greale Test Executon

AGeetback @1 b & e X

Topo

ke« Toms

Detals -

© wnsssionsa
Assgntoma
@ Gisiano cunva

View o board Development
b Cresteranch +

Prat: press B o comment

Jira Ul

Jira Ul

Overall Execution Status A Evecnmrts, et s« 4 crsteconmit +
1
oasseo TomaLTesTS:A
sorne
B oy 1 v coums X7 sprne
Key ‘Summary Assignee #TestExecutions Dataset Latest Status Actions prorty
Medum
O X158 Counter value should be ncremented 1 W Passeo =
o 1w Torisses

G rul oxecutions
Woreflds rgnatesin
[

Uscatad 1 bourao

{3 Configure

Create a Test Execution for the test that you have

Projects / [Xray Tutorials / [XT-584
Unit Test - Validate Counter
@ Atach @) Create subtask D Linkissue v % Testdetails

Description

Add a description.

Test details

B restceals @ Procondions B3 TestSets B TostPlans

This test hasn't been executed, yet

Atestissue is a template that only contains the specification. To
execute this test, you need to create a test run by starting an ad hoc.

excuton o by ading i ot to 21 A},(‘

Existing test execution.

Exploratory App

Fill in the necessary fields and press "Create."

Create Test Execution

project
Xray Tutorials
Summary*
Ad-hoc exection for XT-584
Assignee
Gristiano Cunha v
Choose a user to sssan the Test Executon
Fixversonis
select. v
Tost Environment

Select. v

Execute Immediately.

Open the Test Execution and import the JUnit report.

e | [e

‘Ad-hoc execution for XT-584.

Choose the results file and press “Import."

Import Execution Results

Choose file | Nofile chosen

The file with the execution results for the Test Execution.

The Test Execution is now updated with the test results imported.

projects | (Xray Tutorials | [XT-589
Ad-hoc execution for XT-584
© Atach Createsubtask D Linkissue v [Tests

Description

Add a description.

Tosts

Add Tests v View on board

Overall Execution Status

® - OnyMyTestRuns Fiters v 0 v Coumns -
Ranks key summary TestType Dataset #Defects Status Actions

O 1 XT-588 Counter value should be incremented Generic o [passep]

Prov 1 Next Total 1 issues

Tests implemented will have a corresponding Test entity in Xray. Once results are uploaded, Test issues
corresponding to the tests are auto-provisioned, unless they already exist.

Projects / [Xray Tutorials | @ XT-588
Counter value should be incremented
@ Aach Crestesubtask D Linkissue v % Test details

Description

Add a description.

Test details
EECTTTS © Precondtions © TestSels B TostPians) TestRuns

Test Repository

Testype
cenaric =
oeiion
futtr_demarm e shuid
Activity
show: Al Wistory Worklog Xray History Newest st 1=

Pro tip: press M to comment

Xray uses a concatenation of the suite name and the test name as the the unique identifier for the test.

In Xray, results are stored in a Test Execution, usually a new one. The Test Execution contains a Test
Run per each test that was executed.

projects | (Xray Tutorials | [XT-589
Ad-hoc execution for XT-584
© Atach Createsubtask D Linkissue v [Tests

Description

Add a description.

Tests

AddTsts v View on board
Overall Execution Status
® .« OnyMyTestRuns Fiters v 0 v Comns v
Rank: Key Summary TestType Dataset #Defects - Status Actions
o XT-588 Counter value should be incremented Generic 0 W Passep =0
Prov 1 Next Total 1 issues

Detailed results, including logs and exceptions reported during execution of the test, can be seen on the
execution screen details of each Test Run, accessible through the Execution details:

Projects / [Xray Tutorials / [XT-589
Ad-hoc execution for XT-584
@ ntach @) Createsubtask D Linkissue v [Tests

Description

Add a description,

Tests

Add Tests v View on board
Overall Execution Status
® - OnyMyTestRuns Fiters v 10 v Colmns v

Rank- Key Summary TestType Dataset #Defects Status Actions

Prev 1 Next

Total 1issues
As we can see here:

ot v T | oo 1 X338 T X588 T © 0 ©
= Counter value should be incremented R T r—

» indings ©

Test details D

- o

Tips

® after results are imported in Jira, Tests can be linked to existing requirements/user stories, so
you can track the impact of their coverage.

® results from multiple builds can be linked to an existing Test Plan in order to facilitate the
analysis of test result trends across builds.

® results can be associated with a Test Environment, in case you want to analyze coverage and
test results by that environment later on. A Test Environment can be a testing stage (e.g. dev,

staging, preprod, prod) or an identifier of the device/application used to interact with the system
(e.g. browser, mobile OS).

References

® https://flutter.dev/

® https://docs.flutter.dev/testing

® https://github.com/TOPdesk/dart-junitreport
® https://developer.android.com/studio/intro

Overview
Prerequisites
Application overview
Implementing tests

© Unit Test

© Widget Test

O Integration Test
® Integrating with Xray
© API

= Authentication
= JUnit XML results
° Jira Ul
®* Tips
® References

https://flutter.dev/
https://docs.flutter.dev/testing
https://github.com/TOPdesk/dart-junitreport
https://developer.android.com/studio/intro

	Testing Flutter (iOS, Android, web, desktop) Applications

